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insights and roles on PD.

Background: Parkinson’s disease (PD) diagnosis is yet largely based on the related clinical aspects. However,
genetics, biomarkers, and neuroimaging studies have demonstrated a confirming role in the diagnosis, and future
developments might be used in a pre-symptomatic phase of the disease.

Main text: This review provides an update on the current applications of neuroimaging modalities for PD diagnosis. A
literature search was performed to find published studies that were involved on the application of different imaging
modalities for PD diagnosis. An organized search of PubMed/MEDLINE, Embase, ProQuest, Scopus, Cochrane, and
Google Scholar was performed based on MeSH keywords and suitable synonyms. Two researchers (TM and JPI)
independently and separately performed the literature search. Our search strategy in each database was done by the
following terms: ((Parkinson [Title/Abstract]) AND ((“Parkinsonian syndromes “[Mesh]) OR Parkinsonism [Title/Abstract]))
AND ((PET [Title/Abstract]) OR “SPECT"[Mesh]) OR ((Functional imaging, Transcranial sonography [Title/Abstract]) OR
“Magnetic resonance spectroscopy “[Mesh]). Database search had no limitation in time, and our last update of search
was in February 2021. To have a comprehensive search and to find possible relevant articles, a manual search was
conducted on the reference list of the articles and limited to those published in English.

Conclusion: Early diagnosis of PD could be vital for early management and adequate neuroprotection. Recent
neuroimaging modalities such as SPECT and PET imaging using radiolabeled tracers, MRI, and CT are used to discover
the disease. By the modalities, it is possible to early diagnose dopaminergic degeneration and also to differentiate PD
from others parkinsonian syndromes, to monitor the natural progression of the disease and the effect of
neuroprotective treatments on the progression. In this regard, functional imaging techniques have provided critical
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Background

Parkinson’s disease (PD), as the second most popular
neurodegenerative disturbance, is a chronic advanced
neurodegenerative disorder that causes considerable dis-
ability and reduces quality of life also with a significant
impact on costs to the healthcare system as well as soci-
ety [1, 2]. Two major findings when observing the
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nervous system tissues of patients with PD include loss
of neuronal cells as a result of death of dopamine-
producing nerve cells as well as manifestation of Lewy
bodies in the midbrain [3, 4].

PD diagnosis is quite challenging due to unavailability
of biomarkers [5]. Yet, there is no conclusive indicative
methodology for PD; hence, the analysis depends on the
clinical manifestations of the diseases which is carried
out by observing gradual movements (bradykinesia) with
symptoms including resting tremor, muscle inflexibility,
and postural flimsiness [6]. On the other hand, many
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symptoms of PD are also common within multiple sys-
tem atrophy, progressive supra nuclear palsy, corticoba-
sal degeneration, dementia with Lewy bodies, normal
pressure hydrocephalus, and Alzheimer’s disease to a
range of condition viewpoint, and this may induce
missed or misdiagnosis of the disease [7, 8].

This review provides an update on the contribution of
imaging modalities in PD diagnosis.

Medical imaging approaches in PD diagnosis
Computed tomography (CT)

CT is not the preferred diagnosis imaging modality for
PD because of its limited soft tissue contrast compared
to magnetic resonance imaging (MRI). However, this im-
aging modality can effectively illustrate the patterns of
regional volume loss characteristic of multiple system at-
rophy (MSA), corticobasal degeneration (CBD), or pro-
gressive supranuclear palsy (PSP). Although PD
diagnosis by CT is nonspecific, meanwhile, it is useful in
ruling out focal or regional atrophy, hidden lesions, or
vascular diseases. Typically, contrast media is not indi-
cated to the diagnosis [9].

Magnetic resonance imaging
It was shown that raised magnetic field MRI promise to
more accurately distinguish healthy subjects from PD
patients and also allow improved spatial resolution and
increased contrast which provides better visualization of
basal ganglia contours and shapes [10, 11]. In compari-
son to normal controls, a reduction in both
magnetization transfer ratio and functional anisotropy in
the substantia nigra has also been reported by MRI [12].
Although high gray/white matter contrast is accessible
with conventional 3D T;-weighted sequences for cortical
and some basal ganglia constructions, there is poor con-
trast in many structures of interest in PD including sub-
stantia nigra (SN), subthalamic nucleus (STN), globus
pallidus (GP), and red nucleus (RN) which contains high
iron levels leading to shortened T; and the reduced con-
trast [13]. Iron load is considered as an advantage in T,/
T, -weighted sequences so that provides an enhanced
contrast due to the T, shortening effects [14—16].

Iron load

Physiologically, brain tissue contains iron mostly stored
in the form of ferritin. In the basal ganglia (globus palli-
dus (GP) > putamen > caudate), ferritin accumulates as
a function of age in a linear manner. Quantitative sus-
ceptibility mapping (QSM) and also iron-sensitive MRI
sequences (including SWI, 3D FLAIR, T,, R, and R, re-
laxation) have been more and more used in PD investi-
gation metabolism and iron content [14].
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Increased iron load in PD and T, relaxometry have
shown reduced T,/T,* adiabatic T,p relaxation times
and increased R,/R,* relaxation rates [15—17].

Magnetization transfer imaging (MTI)

MTI is a technique which trusts on the transmission of
energy between highly bound protons and mobile pro-
tons. The MT measure is consequently associated with
myelination and axonal density degree. MT rate can be
quantitatively examined by MT imaging. Reduced
magnetization transfer ratio (MTR) has been observed in
the SN and basal ganglia (GP, the putamen, caudate nu-
cleus) of PD patients [18, 19].

Perfusion imaging

Arterial spin-labeled (ASL) perfusion imaging approach
by MRI has been recently presented for perfusion mea-
surements as a noninvasive option in PD [20, 21]. Arter-
ial spin labeling (ASL) as a quantitative and functional
imaging method measures tissue perfusion using mag-
netically labeled protons with radiofrequency (RF) waves
in arterial blood water content as an endogenous tracer.
ASL is non-invasive and able to quantitatively measure
tissue perfusion. Recent technical advances have in-
creased its sensitivity and also extended the potential ap-
plications [22]. In PD, it was shown a reduced perfusion
in the cortex and either conserved or reduced in the
basal ganglia and conserved in the sensorimotor areas
[20, 21]. Several studies on ASL-MRI have consistently
shown symmetrical cortical hypoperfusion in PD involv-
ing predominantly the parieto-occipital areas and the
dorsolateral prefrontal cortex [20]. In PD patients with
dementia, posterior perfusion deficits were found to be
more striking than without dementia [23].

In a study on both FDG-PET metabolism and ASL-
MRI perfusion in PD, it was found overlapping meta-
bolic and perfusion deficits [24]. ASL-MRI has the po-
tential to identify PD early in the PD disease course
when the patients show disease-specific metabolism pat-
terns with FDG-PET characterized by relatively in-
creased metabolism in the globus pallidus and putamen,
thalamus, cerebellum, pons, and sensorimotor cortex
and relative decreases in the lateral frontal and parieto-
occipital areas [25-27].

Diffusion tensor imaging
Diffusion tensor imaging (DTI) is a MRI technique
which is widely applied to diagnose several neurodegen-
erative diseases [28, 29]. DTI provides information about
the orientation and integrity of white matter tracts
in vivo with the aid of anisotropic water diffusion in
white matter [30—32].

DTI evaluates the degree of directionality by means of
anisotropy (frequently fractional anisotropy [FA]) and
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also the overall movement of molecules (mean diffusivity
[MD]; trace; apparent diffusion coefficient [ADC]) as
well. The measurements can either be extracted locally
in predefined regions using region of interest (ROI) ana-
lysis or, alternatively, globally by voxel-based analysis
(VBA) or tract-based spatial statistics (TBSS).

The most widely applied algorithm to extract related
fiber data for processing DTI information is tractography
[33]. In this procedure, the processed fiber data is evalu-
ated with a connectivity analysis that lets observation of
the whole brain as a complex linked network [34, 35].
Resting-state functional MRI (vs-fMRI) was used to ob-
serve defects in functional connectivity in the identical
circuit [36].

Disruptions to microstructural tissue integrity, such as
those seen in the neurodegeneration of parkinsonian
syndromes could be affiliated with variations in anisot-
ropy and diffusivity procedures [28, 29].

In spite of uncommon changes visible on conventional
MRI imaging including narrowing or disappearance of
the pars compacta of the substantia nigra (SN) on usual
T,-weighted-imaging, this sign has low sensitivity and
specificity and contributes marginally to the diagnosis of
PD [37].

Susceptibility weighted imaging (SWI) is a new MRI
technique that can be performed on conventional MR
scanners with an imaging time comparable with or lower
than that of other advanced sequences. The technique is
hopeful in PD diagnosis by the improved sensitivity to
detect brain mineralization. There is evidence that SW1I
images improve visualization of the SN due to the in-
creased sensitivity to brain iron concentration and other
metals [38]. Brain iron deposition has been proposed to
play a key role in the pathogenesis of Parkinson disease
(PD) [39].

The iron concentration is quantitatively different in
PD and atypical parkinsonian disorders. Increased iron
concentration and, more importantly, impaired iron
handling are assumed to cause tissue damage via oxida-
tive stress formation of free oxygen radicals [40].

SWI sequences were considered to have a stronger and
more accurate correlation with brain iron load than R, re-
laxation rate alone [38]. Studies have shown that this se-
quence is severely sensitive to mineralization and
substances with magnetic susceptibility, hence, to be more
sensitive than conventional gradient echo sequence in the
detection of PD and parkinsonian syndromes [41, 42].

Diffusion-weighted MRI

Diffusion-weighted MRI (DWI) has been utilized in dif-
ferentiation of PD and other parkinsonian syndromes
using water apparent diffusion coefficients (ADC) [43].
ADC relies on both interactions between water mole-
cules as well as the chemical environment and the

(2021) 52:79 Page 3 of 12

structural barriers at cellular and subcellular level hin-
dering their motion in vivo [44]. There are several re-
ports on differentiation of MSA-P from PD whom
demonstrated respectively high and normal putaminal
ADC [40, 45, 46].

There have been a number of reports which showed
that DWI method distinguished MSA-P in early stages
with Parkinson’s disease and also healthy volunteers on
the basis of increased putaminal ADC values which was
also related with disease severity [47, 48].

In an investigation by Schocke et al. [47], an expanded
diffusivity was additionally found in the caudate nucleus
and globus pallidus in MSA-P in contrast with Parkin-
son’s disease patients and controls that could be reflect-
ing the spreading neurodegeneration in the basal
ganglia. Similar results were also obtained for PSP; how-
ever, MSA-P and PSP could not be isolated by DWI
technique. A further report by Seppi et al. [49] on DWI
in MSA with cerebellar feature patients (MSA-C)
depicted an increment of the ADC in the pons, in the
middle cerebellar peduncle, in the cerebellar white mat-
ter, and in the putamen.

In vivo magnetic resonance spectroscopy (MRS) is a fur-
ther tool that could be used as supplementary to conven-
tional MRI in characterization of the brain metabolism
changes in patients with PD and, as an ideal imaging bio-
marker, has been found to meet plenty of criteria [50]. In-
deed, MRS has good constancy (test-retest reliability) and,
in comparison with PET and SPECT, is a non-invasive
and inexpensive method [50]. Furthermore, in comparison
with in vitro molecular imaging, MRS has been shown to
be unrestricted to specialized centers for analysis. The me-
tabolites recognizable with proton MRS incorporated the
outstanding resonances of N-acetylaspartate (NAA),
choline-containing mixes (Cho), creatine + phosphocrea-
tine (Cr), myo-inositol (ml), lactate (Lac), and a variety of
different resonances that probably would not be appar-
ently relying upon type and nature of spectra just as on
the pathological condition [51].

Studies have shown the efficacy of MRS for differenti-
ating PD in the presence of other atypical parkinsonian
disorders (APDs) [52, 53].

MRS has also been shown to be effective for delineat-
ing PD in early stage (which is even more difficult to dis-
tinguish  because of overlapping syndromes of
parkinsonism) [54].

Table 1 provides some clinical pointers and radio-
logical features in parkinsonian syndromes by various
imaging techniques [55].

The concentration changes of all metabolites identified
by MRS could assist with assessing PD subjects with
early motor symptoms, particularly in early differential
diagnosis. Single-voxel proton magnetic resonance spec-
troscopy (1H-MRS) of striatal structures may
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Table 1 Clinical pointers and radiological features in parkinsonian syndromes by various imaging techniques [55]

Syndrome

Clinical pointers

Radiological features

Multiple system
atrophy

Progressive
supranuclear palsy

Corticobasal

> May be indistinguishable from PD in early stages
> Jerky finger tremor related to mini-polymyoclonus
> “Strangulated” dysarthria

> Axial/craniocervical levodopa-induced dyskinesia

> Erect posture with good step size at presentation
> Frequent falls and injuries early in the disease course
> Slowed saccadic eye movements may be subtle in early disease

> Markedly asymmetrical rigid/akinetic/apraxic limb with relatively

> Cerebellar atrophy

> T2 high signal in degenerating pontocerebellar fibers
leading to “hot-cross bun” sign (Fig. 2)

> T2 low signal in putamen with rim of increased signal
on lateral edge

> Midbrain atrophy (with “hummingbird” sign on sagittal
brainstem images, Fig. 3)
> 3rd ventricle dilatation

> Asymmetric frontoparietal atrophy on MRI

degeneration normal contralateral limb in early disease

Essential tremor > High-frequency tremor

> DaTscan is normal

> The tremor is postural and kinetic, and improves with rest

> Absent PD non-motor features
> Head and neck tremor
> May have a long and benign course

> Thumb extension tremor
> Jerky tremor with flurries of tremor
> May be task-specific or task-exacerbated

Dystonic tremor

Vascular
parkinsonism

> Presents as gait disorder

parkinsonism

> “Lower body" parkinsonism with mild or absent upper body

> DaTscan is normal

> Neuroimaging shows variable degrees of small-vessel is-
chemic changes

PD Parkinson’s disease

discriminate PD from APDs by virtue of diminished
NAA/Cr proportions in MSA but not in PD. In com-
parison with normal controls, in patients with PSP,
CBD, and MSA, critical decrease of the NAA/Cr ratio in
the frontal cortex was seen. Patients with CBD have in-
dicated a significant decrease on the NAA/Cr ratio in
the frontal cortex and putamen when contrasted with
patients with PD and MSA [58]. On the other hand, pa-
tients with CBD have demonstrated clear asymmetry in
the putamen when contrasted with controls and also in
different patients [58].

Chougar et al. [59] figured out that patients with PSP
and MSA-P had lower NAA concentrations in the palli-
dum, putamen, and lentiform nucleus contrasted with
normal controls and patients with PD. However, differ-
ent MRS reports have indicated diminished NAA/Cr
and NAA/Cho proportions in the lentiform nucleus in
APD, as well as in PD [60, 61].

Functional connectivity imaging

Functional magnetic resonance imaging (fMRI) was ori-
ginally proposed for the detection of task-related signal
changes in the brain, blood oxygen level dependent
(BOLD), and in investigating functional connectivity in
distant regions of the brain. Remote regions giving rise to
distributed cortical and subcortical networks refer to tem-
poral association of variations of the resting stage fMRI
signal [62]. Via computational modeling, these networks
are obtained from rsf-MRI data [63, 64]. Anatomical con-
nectivity and resting state functional MRI (rsf-MRI) have
been observed using tractography (Fig. 1) [65].

Rs-fMRI in PD diagnosis studies have detected irregu-
lar functional regional interactions in resting brain net-
works [66, 67], and hence, it was concluded that PD
relates to the variations in cerebral connectivity between
the basal ganglia, cortex, or cerebellum [66], and be-
tween the STN, cortical motor, and premotor areas [67].
The variations have been observed in the sensorimotor
circuit associated with a reduction in functional coupling
[68, 69]. Abnormal functional connectivity was also
demonstrated in the default-mode network in cognitively
unimpaired PD patients which may be associated with
cognitive performances in memory and visuospatial tests
[70]. The supplementary motor area presents a de-
creased signal fluctuation in drug-naive PD patients who
were not previously exposed to the therapy or treatment,
while an improved functional connectivity was detected
in this area with levodopa and in specific frequency band
variations [71]. The variations in resting state BOLD
fluctuations were successful in estimating the presence
of PD, and variations in functional connectivity were dis-
tinctively related with symptoms of PD [72]. To predict
motor performance, increased amplitude of low-
frequency BOLD signal oscillations method was used in
the premotor cortex [73]. In PSP, rsf-MRI presented
connectivity disruptions among the dorsal midbrain teg-
mentum and the cerebellum, diencephalon, basal gan-
glia, and cortex which were related to more critical
functional impairment [73, 74], either it was shown an
interruption between thalamus and striatum, supple-
mentary motor area, and cerebellum [75]. In general, re-
sults with fMRI in resting state refer that dopamine
depletion in PD produces remapping of cerebral
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Fig. 1 MRI of nondegenerative “symptomatic” causes of parkinsonism. a Bilateral thalamic grade I glioma. Axial T2-weighted turbo spin echo MR
image reveals two hyperintense mass lesions in the thalami. b Axial T2-weighted FLAIR MR image shows marked dilatation of the lateral
ventricles exhibiting a ballooned shape and effacement of the cortical sulci. ¢ Sagittal T; spin echo MR image confirms the dilatation of the lateral
ventricle and reveals dilatation of the cerebral aqueduct and fourth ventricle. Note the bowing of the corpus callosum and the effacement of the
cortical sulci. Both cases in b and ¢ images have normal pressure hydrocephalus. d Creutzfeldt-Jakob disease. Axial T-weighted MR image shows
symmetric hyperintensity of the putamen and head of caudate. e Axial T;-weighted spin echo and coronal T;-weighted gradient echo. f MR
images show marked symmetric hyperintensity of the globus pallidus, putamen, and caudate [63]

11191 0172

connectivity which influences predominantly on sensori-
motor circuit and sensorimotor integration that was af-
fected by levodopa and differently related to motor and
nonmotor symptoms [74].

Positron emission tomography (PET)

PET is a powerful and multipurpose imaging modality
which allows in vivo examination of brain processes. It
has made valuable contribution to neuroscience research
by giving functional information as well as quantitative
data of cerebral blood flow, metabolism, and receptor
binding. However, its application in clinical neuroscience
is confined compared to oncology due to the high costs
and need for tremendous supporting facilities such as in
site  cyclotron, PET and radiochemical
laboratories.

PET provides an impartial in vivo quantification of
local radiotracer activity with a very proper sensitivity
[23]. It can be used to observe cerebral blood flow and
energy metabolism which are based on radiotracers [24].

An accuracy of 90% may be the highest value that can
be expected with clinical assessment using current diag-
nostic criteria of PD [76]. Definitive diagnosis is only by
demonstration of intraneuronal Lewy body inclusions in

scanner,

the substantia nigra compacta. PET reports have
attracted an enormous recognition due to its ability to
detect disease long before beginning of the symptoms
[40].

'8r_deoxy-glucose ("8FDG) PET/CT brain

Despite the increasing use of FDG-PET/CT in clinics
and research, its use in PD has been limited due to low
spatial resolution and image quality, and high cost.
FDG-PET is useful for differentiating PSP from idio-
pathic PD [77]. In PD-related cognitive decline, BEDG-
PET has a typical template of hypometabolism chiefly af-
fecting the posterior cortical regions [77].

"8EDG PET investigations can provide a measure of
resting glucose metabolism and thus neuronal activity
[78]. Increased glucose metabolism has been shown in
the contralateral lentiform nucleus in patients with early
unilateral parkinsonism [79]. Covariance investigation
areas in PD patients has demonstrated hypermetabolism
in the lentiform nucleus and thalamus with hypometa-
bolism in the frontal, parietal, and parieto-occipital
(Fig. 2) [56, 79].

Most PET '®F-deoxy-glucose (FDG) studies have
shown ordinary striatal metabolism in PD, thereby
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global mean [78]

Fig. 2 The administration of '*FDG-PET for the diagnosis of Parkinson’s and degenerative parkinsonism disorders. Consequences of the between-
group statistical parametric mapping analysis for each diagnostic category shown in the vertical axis as follows: Parkinson'’s disease (PD), multiple
system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), vs. healthy controls. The red and yellow colors

highlighted regions superimposed on normal T;-weighted MR templates showing areas with significantly reduced FDG uptake relative to the

suitable in differentiating PD from other parkinsonian
syndromes including progressive supranuclear palsy
(PSP) or multiple system atrophy (MSA) [80, 81]. By the
technique, metabolic irregularities have been observed in
a specific network in PD by investigating regional meta-
bolic covariance patterns [82].

'8F_Dopa PET studies
Khamis et al. [83] have shown that *F-Dopa PET is a
valuable tool for identifying reduction of dopaminergic
activity in PD patients at a very primary phase. But the
uptake might be upregulated in early stage of the disease
while expression of DATs might be downregulated.
18F_6-fluoro-L-dopa radiotracer uptake study indicates
the dopaminergic nerve density; moreover, it expresses
activity of the aromatic amino acid decarboxylase en-
zyme (AADC) converting dopa into dopamine and the
storage of dopamine [84]. This radiotracer allows assess-
ment of presynaptic dopaminergic system viability in the
nigrostriatal as well as mesolimbic and mesocortical
dopaminergic pathways. In PD, a major decline in stri-
atal "*F-Dopa uptake is usually detected, thereby indicat-
ing degeneration of dopaminergic nigrostriatal pathways
[85]. The uptake reduction is well correlated with neur-
onal degeneration as demonstrated in pathological stud-
ies by Kroth et al. [86]. Although at the early stages of
the disease, false negative cases have been observed as a

result of compensatory upregulation of AADC in pre-
served dopaminergic terminals [86]. The situation has
been differed using dopamine transporter ligands such
as Br-FECBT, due to the fact that dopamine transporter
activity is not regulated as dopa decarboxylase [87].
Ribeiro et al. [88] reported higher sensitivity of DAT im-
aging compared to '®F-Dopa in detecting dopaminergic
degeneration especially in early-stage PD. At advanced
stages, the upregulation diminishes. The reduction in
striatal '®F-Dopa uptake is not homogeneous in the stri-
atum, and a clear anteroposterior gradient is observed
when the caudate is being less affected than the anterior
putamen and the anterior putamen less affected than the
posterior putamen. Hence, '®F-Dopa PET aids positive
diagnosis of parkinsonian syndromes even at its pre-
symptomatic stages [89].

8F_Dopa PET has shown that clinical expression of
PD symptoms happen when about 50% of dopamine ter-
minal function is harmed in the posterior putamen [90].

In a typical patient with unilateral parkinsonism, '*F-
Dopa could reveal bilaterally decreased putamen dopa-
minergic function with activity being the most depressed
in the putamen contralateral to the affected limb/limbs
[73]. Dopamine terminal dysfunction in the asymptom-
atic relatives of PD patients can be detected by PET [91].

8F_Dopa was used to study 32 members of unrelated
familial kindred of which 8 showed reduced uptake in
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Fig. 3 DaT scan SPECT images from four patients. Image (a) showing normal “comma” configuration on the striata bilaterally, with a score of 0.
Mild progressive loss of dopamine transporters depicted on the right (arrow) (b) score of 1, moderate on the left (arrow) on image (c) score of 2

Page 7 of 12

and severe on the left (arrow) on image (d) score of 3 [96]

\

the putamen. Interestingly, 3 out of those 8 ones devel-
oped clinical parkinsonism in a 5-year follow-up period
[92].

Single photon emission tomography (SPECT)

The combined pre- and postsynaptic as well as clinical
criteria using SPECT imaging method could improve the
diagnosis of Parkinson’s disease in early stage [93]. The
fusion of presynaptic DAT and postsynaptic D2 receptor

binding has shown improved diagnostic value in ruling
out patients with non-idiopathic parkinsonian syn-
dromes from PD patients [94].

Dopamine transporter scan (DaT scan)

In this test, a radiolabeled tracer, e.g., **I-ioflupane, is
injected into a patient’s veins, circulates around the
body, and gets into the brain. When DAT and dopamin-
ergic neurons reduce in PD and other pre-synaptic

Fig. 4 Dopamine transporter imaging by administration of '**I-fluopane (FP)-CIT in a patient with Parkinson’s disease (a), an essential tremor (b),

and a healthy control (c) [104]
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Fig. 5 The administration of iodine-123 metaiodobenzylguanidine ('-MIBG) and its uptake in Parkinson'’s disease (PD) (left) and multiple system
atrophy (MSA) (right). Normal heart uptake in the MSA patient is seen. The image shows extensive liver uptake in both patients [104]

parkinsonism diseases, SPECT imaging should take place
several hours after the tracer has been administrated. In
PD, there is a smaller signal in striatum section of the
brain where the ends of the dopamine neurons are
meant to be [95, 96]. Indeed, the expression of this pro-
tein may reflect the functional dopaminergic neuronal
density in striatum part, and its decrease in PD is pre-
sumed to be in proportion with severity of the illness
(Fig. 3) [57, 97, 98].

DaTscan have no reliable results in the diseases with
loss of dopaminergic nerve cells and the resultant de-
crease in striatal dopamine levels. So, Parkinson-plus
syndromes, such as progressive supranuclear palsy
(PSP), corticobasal ganglionic degeneration (CBGD), and

multiple system atrophy (MSA), cannot be discriminate
with DaT scan method, and hence, the mentioned cases
are typically demonstrated abnormal [76].

Although DaT scan is not able to distinguish between
Parkinson’s disease, PSP, CBGD, and MSA from PD, but
there are several reports that confirm the ability of the
method to distinguish PD from drug-induced parkinson-
ism and vascular parkinsonism [99].

'2|joflupane SPECT imaging

2L joflupane-SPECT is an important diagnostic modal-
ity for differentiating parkinsonian syndromes (PD,
MSA, PSP, CBD) from ET and drug-induced parkinson-
ism, indicating early stage of the disease in comparison

(b)

Fig. 6 SPECT imaging using " Tc-TRODAT-1 in normal control (a) and patient with early PD (b). In the case of patient with early PD in
comparison to control, images show reduced TRODAT-1 uptake in the striatum [108]
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Table 2 Some radiotracers used for Parkinson’s disease SPECT

Biological variable radiotracer
Ba-r
1231 Fp-R-CIT

'Z31IPT (presynaptic dopamine transporter)

Dopamine reuptake
(dopamine transport)

'2|_Altropane
1313-pE2

P c-TRODAT-1
2| odospiperone

'?*l-lodobenzamide (1231-IBZM)
(postsynaptic dopamine D2 receptor)

2 odolisuride, 123I-IBF,

D2 dopamine receptor

123|-Epidepride (extrastriatal DA receptors)

to anatomical modalities including conventional CT or
MRI [100]. This approach provides valuable diagnosis
based on local binding of presynaptic dopamine trans-
porters (DaTs) with '**I-ioflupane, which has been re-
ported to have high association with progression of PD
[101]. The striatum has been the focal point of most in-
vestigations making use of '**I-ioflupane-SPECT. It has
been shown that PD has significantly reduced dopamine
transporter levels in the striatum [100].

123)_fluopane-CIT

12[_fluopane-CIT, an analog of ***I-B-CIT as radiotracer
in SPECT imaging, was widely used to investigate the
presynaptic dopaminergic system in early diagnosis of
parkinsonism and differential diagnosis of PD from ET
(Fig. 4) [102, 103].

It was found that the accuracy of diagnosis was the
same in both clinical exam and using DaT scan [95].
DaT scan is claimed to have enough sensitivity to dis-
criminate changes in the nigrostriatal dopaminergic sys-
tem of normal controls as well as PD patients [104].

1231 MIBG scintigraphy

Iodine-123 metaiodobenzylguanidine (***I-MIBG) scin-
tigraphy is a noninvasive and secure diagnostic strategy
to recognize and assess sympathetic denervation (Fig. 5)
[102]. It has reported a diminished uptake of '**I-MIBG
in myocardial sympathetic neurons in PD, demonstrat-
ing an impaired postganglionic sympathetic innervation
in this disorder [105]. The main problem concerning
1B_MIBG/SPECT is its low specificity (37.4%) in spite
of its moderately high sensitivity (87.7%) [102].

™ Tc-TRODAT-1

TRODAT-1, a ®*™Tc-labeled tropane derivative, is a co-
caine analogous that can attach to the dopamine trans-
porter (DAT) sites at presynaptic neuron membrane
which is beneficial as a potential CNS dopamine
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transporter imaging agent and can be labeled with *™Tc
without difficulty in most nuclear medicine departments
all over the world [106].

Some related researchers have discerned that DAT im-
aging with **™ Tc-TRODAT-1 SPECT has high sensitiv-
ity particularity in differentiating PD from ET [107]. PD
follows a particular pattern on DAT SPECT demonstrat-
ing more decreasing of **"Tc-TRODAT-1 binding on
the contralateral to the symptomatic side and a reduc-
tion slope in tracer binding with greater/more reduction
in putamen as compared to caudate nucleus (Fig. 6)
[108]. ®™Tc-TRODAT-1 has advantages of easy accessi-
bility of **™Tc, lower cost, optimal energy for imaging,
and faster pharmacokinetics, permitting image embodi-
ment within a few hours [109].

Some of radiotracers used for SPECT imaging in PD
diagnosis are illustrated in Table 2.

Conclusion

There are several diagnostic imaging approaches for
screening of PD including PET, SPECT, MRI, and CT.
Emission tomography (SPECT or PET) has an important
role in PD diagnosis; however, it tends to be costly, with
restricted accessibility, and needs radioactive tracers. It
seems that the advanced MRI techniques as DWI, DTI,
MRS, MT], and magnetic resonance imaging-based volu-
metry are more delicate in separating PD from atypical
parkinsonian.
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