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Artificial intelligence development for
detecting prostate cancer in MRI
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Abstract

Background: Artificial intelligence (AI) is the recently advanced technology in machine learning which is
increasingly used to help radiologists, especially when working in arduous conditions. Microsoft Corporation offered
a free-trial service calling Custom Vision to develop AI for images.

Results: This study included 161 prostate cancer images with 189 lesions from 52 patients. The 160-tag iteration
presented the best performance: precision 20.0%, recall 6.3%, mean average precision (M.A.P.) 13.1%, and prediction
rate 31.58%. The performance of a 1-h training was better than quick training, but was not different from a 2-h
training.

Conclusion: Health personnel can easily develop AI for the detection of prostate cancer lesions in MRI. However,
the AI development is further required, and the result should be interpreted along with radiologist.
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Background
Prostate cancer is the 4th most common cancer in Thai
men with 6467 new cases in 2018 or 7.6% of all new
cancer cases in Thai men [1]. Prostate cancer is the 2nd
most common cancer in both incidence and mortality of
men worldwide [2, 3].
Several companies have developed computer-aided de-

tection and diagnosis (CAD) for radiology since the late
1960s. But the real development and systematic research
were begun in the early 1980s [4]. Artificial intelligence
(AI), which is the recently advanced technology in ma-
chine learning, may improve CAD for radiology in clin-
ical practice. In general, AI tasks included automated
detection, localization of suspicious lesions, automated
diagnostic classification, and prediction of the aggres-
siveness of cancer from prostate multi-parametric MRI
[5–7]. Although AI recently causes concern that ma-
chine may replace human in the near future, these fears
have occurred periodically among radiologists since the

first development of CAD. Nowadays, CAD and AI have
proven their support role for radiologists, especially
under arduous condition [8–10].
Microsoft Corporation introduced its cloud platform

called Azure supplying over 100 services, some are free-
trial and some are always free. The machine learning is a
feature-based algorithm of the AI before the advent of
deep learning (DL), which is the main algorithm for de-
veloping AI for medical imaging. Under the budget-
constrained situation in the authors’ hospital, an attempt
was made to develop AI for detecting cancer lesions
within MRI under “custom vision” which is one of the
free-trial services from Azure. It was aimed to test the
possibility of using this service; therefore, this is a pilot
study conducted solely by clinicians with some guidance
from one computer scientist.

Methods
This study was approved by the institution Ethics Com-
mittee for Human Research based on the Declaration of
Helsinki and the ICH Good Clinical Practice Guidelines.
No informed consent was needed because this was a
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retrospective study of stored images in the hospital
PACS database.
Radiological images of prostate cancer-proven patients

who underwent multi-parameter MRI (mpMRI) during
2 years (2018–2019) were retrieved from the hospital
PACS database. The scans were obtained by using the
3T MRI scanner (Achieva®, Philips Health Care) or 1.5T
MRI scanner (Aera®, Siemens AG 2012), without endor-
ectal coil. The mpMRI techniques of protate gland in-
cluded the following:

� Axial T1W, T2W in whole pelvis, small FOV 48.1 ×
36 cm, 8-mm-slice thickness

� Coronal T2W or BTFE, 3-mm-slice thickness
� Thin slice axial, sagittal, and coronal image T2W

TSE, large FOV 21.4 × 16 cm, 4-mm-slice thickness
� Diffusion image (B0-800-1000-1500), ADC map in

small FOV 24 × 18 cm, 3-mm-slice thickness
� DCE serial dynamic contrast enhancement in small

axial FOV, 3-mm-slice thickness

Only 161 prostate cancer images of T2W axial views
with 189 hypointense signal lesions (PCa lesion) from 52
patients (PIRADS 4 or 5) were included in this study. All

lesions were located within transition or peripheral
zones. All patients were biopsied by core needle instru-
ments via TRUS.
The training processes were divided into 5 iterations

of 30, 60, 100, 130, and 160 lesion datasets. The images
were uploaded and every lesion manually taggged to
help train the object detector. If an image has 3 PCa le-
sions, it added up to 3 tags in this dataset. After each
training for 1 h, this AI was evaluated with testing a
dataset from 10 different images that were not included
in the training dataset. The testing dataset was com-
posed of 19 PCa lesions.
The system presented the “Performance Per Tag” after

the training process into 3 values:

1. Precision indicates the fraction of identified images
that were correct. For example, if the model
recognized lesions in 100 images, and 99 of them
were actually had lesions, then the precision would
be 99%.

2. Recall indicates the fraction of actual images that were
correctly recognized. For example, if there actually were
100 images containing lesions, and the model
recognized 80 of them, the recall would be 80%.

3. Mean average precision (M.A.P.) tells the overall
precision of the object detector at finding lesion.

The clinical performance of this AI is presented with
the amount and percentage of correct detections among
5 iterations of training.
Another factor that affects the AI performance should

be the duration of training. One-hour training was used
as a standard training process as previously mentioned.
Then, “quick training” and “2-h training” iterations were

Table 1 The “Performance Per Tag” of 5 iterations with a 1-h
training

Dataset (tags) Precision (%) Recall (%) M.A.P. (%)

1. 30 0.0 0.0 34.8

2. 60 0.0 0.0 11.1

3. 100 0.0 0.0 4.8

4. 130 0.0 0.0 4.0

5. 160 20.0 6.3 13.1

Fig. 1 The false-positive prediction from the 60-tag iteration: a radiologist identified 2 lesions at anterior transition zone and right peripheral zone
(red circle) in a testing image. b AI predicted lesion (red rectangle) at the peripheral zone which was a false position
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performed with the 160 lesion dataset and these perfor-
mances in both “Performance Per Tag” and clinical per-
formance were compared.

Results
This study included 161 prostate cancer images with 189
PCa lesions from 52 patients. The “Performance Per
Tag” of 5 iterations of 30, 60, 100, 130, and 160 tags are
presented in Table 1. Ten images with 19 PCa lesions
were tested in each iteration. The false-positive predic-
tion from the 60-tag iteration is shown in Fig. 1. The
100-tag iteration showed true-positive predictions in
Figs. 2 and 3; however, only one out of three PCa lesions
was predicted in Fig. 3. The clinical performance of each
training with the same testing dataset (10 images with
19 PCa lesions) is presented in Table 2.
The “Performance Per Tag” was improved from the

quick training iteration to the 1-h training iteration, but
the 2-h training iteration showed the same values as the
1-h training iteration (Table 3). The clinical performance
showed the same results as the “Performance Per Tag”
(Table 4).

Discussion
Artificial intelligence (AI) is developed from computer
algorithms to simulate intelligent behavior that is cap-
able of learning, reasoning, problem-solving, and self-
developing. One of the more sophisticated sets of algo-
rithms is often referred to as deep learning (DL) which
is developed from the machine learning (ML). The ML
is the ability of an AI to extract information from raw
data and to learn from experience [11–14]. Microsoft
Corporation provides the free-trial service called “cus-
tom vision” which health care personnel can use to de-
velop the AI in their daily practice, especially in
radiology. This free-trial service, however, can be
regarded as an ML level, while DL needs some add-
itional programming. So DL was not included in this
study.
In theory, more learning makes better AI performance,

so the “Performance Per Tag” should improve gradually
from 30, 60, 100, 130, and 160-tag iterations. Although
the 160-tag iteration showed the best performance
values, other iterations showed inconsistent values. The
clinical performances improved gradually from 30, 100,
130, and 160-tag iterations, except for the 130-tag

Fig. 2 The true prediction from 100-tag iteration: a radiologist identified 1 lesion (red circle) in a testing image. b AI predicted 1 lesion (red
rectangle) at the true position

Fig. 3 The partial true prediction from 100-tag iteration: a radiologist identified 3 lesions (red circle) in a testing image. b AI predicted 1 lesion
(red rectangle) at the true position
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iteration which showed the results worse than the 100-
tag iteration. Many discrete tag varieties, in which each
variety had few tag patterns, may confuse the AI on the
130-tag iteration. With more tag patterns, the AI made
better clinical performances with the best prediction rate
at 31.58%.
The duration of training should affect the perform-

ance, and more sophisticated learning needed more
time. The 1-h training model made better perfor-
mances than a quick training model. The 2-h training
model, however, was no different in performance
from the 1-h training model. With only 160 tags, the
AI needed 1 h to experience every pattern thoroughly.
One more hour helped the AI learn nothing more. If
more images were uploaded, a 2-h training may im-
prove AI performance.
The accuracy and speed of the CAD/AI systems are

dependent upon how their algorithms register data and
how the system has been trained to learn effect calcula-
tion times [10]. The accuracy of detection for prostate
cancer using CAD/AI system (43%) was comparable to
standard ultrasound-guided biopsy (40%) [15]. Our study
used the discrete images to train AI system which was
less sophisticated than CAD/AI system, so it was not
surprised to achieve low precision (20%) and recall
(6.3%) which meant only 6.3 cases would be detected
correctly from 100 positive cases. There is a need to per-
form additional studies with large data sets to improve
the performance and impact of this system. Besides

radiologist, other clinicians should use the AI system
with utmost consideration.

Conclusion
Health personnel can easily develop AI for the detection
of PCa lesion in T2W MRI. AI can predict one third of
PCa lesions correctly after training with only 160 images
and the free-trial service. However, the AI development
is further required, and the result should be interpreted
along with radiologist.
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5 (1 lesions) 0 0 0 0 1

6 (2 lesions) 0 0 0 0 0
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Table 3 The “Performance Per Tag” of 3 different durations of
training with a 160 lesion dataset

Duration Precision (%) Recall (%) M.A.P. (%)

1. Quick 0.0 0.0 2.3

2. 1 hour 20.0 6.3 13.1

3. 2 hours 20.0 6.3 13.1

Table 4 The clinical performance of 3 different durations of
training with a 160 lesion dataset

Test/train Quick 1 hour 2 hours

1 (3 lesions) 0 1 1

2 (1 lesion) 1 1 1

3 (3 lesion) 0 0 0
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6 (2 lesions) 0 0 0

7 (1 lesions) 1 0 0

8 (1 lesions) 0 1 1

9 (2 lesions) 0 1 1

10 (3 lesions) 0 0 0

Total (19 lesions) 2 6 6

Percent 10.53 31.58 31.58
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