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Abstract 

Background The Global Initiative for Obstructive Lung Disease (GOLD) staging approach is frequently used to clas‑
sify the severity of COPD by using spirometry. Recent advancements in artificial intelligence applications enable the 
automatic identification of COPD severity by chest computer tomography (CT). The goal of this study is to define the 
role of artificial intelligence in determining the severity of COPD.

Methods  We used a non‑contrast CT chest and a computer‑aided detection system (Coreline Soft’s AVIEW), which 
was conducted as a descriptive cross sectional study and involved 80 cases. For the diagnosis of parenchymal disease 
using density mask methods such as inspiratory low attenuation area‑950% (%LAA‑950  HUINS) and D‑value (cluster‑
size analysis), the spirometry‑based Tiffeneau index (TI; calculated as the ratio of forced expiratory volume in the first 
second (FEV1) to forced vital capacity was used to assess the severity of COPD.

Results  Based on the results of the spirometry, the patients were divided into four groups: mild (n = 23), moderate 
(n = 39), severe (n = 17), and very severe (n = 1). Insp. LAA‑950 (%) in GOLD group 3 was substantially greater than in 
GOLD groups 2 and 1. Additionally, when compared to groups 2 and 1, the D‑value in the GOLD 3 group was signifi‑
cantly higher.

Conclusions Inspiratory LAA‑950% and D‑value were found to be significantly related to COPD severity as measured 
by dyspnea scale and spirometry. Inspiratory LAA‑950% was effectively capable of distinguishing between patients 
with severe and moderate COPD.
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Background
In radiography, disease evaluation is frequently relied on 
the training and expertise of the radiologists and can be 
arbitrary. In contrast to that qualitative assessment, auto-
mated quantitative assessment is provided by artificial 
intelligence (AI), which is superior at spotting intricate 
patterns in images [1].

Chronic obstructive pulmonary disease (COPD) is 
defined by the Global Initiative for Obstructive Lung 
Disease (GOLD) group as a common preventable and 
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treatable disease which is characterized by airflow limi-
tation that is progressive usually and combined by an 
enhanced chronic inflammatory response in the airways 
and lung to gases and noxious particles [2].

Chronic obstructive pulmonary disease which encom-
passes two main disorders—emphysema and chronic 
bronchitis—is the third greatest cause of disability and 
the fourth most prevalent cause of death in the USA, 
according to the Centers for Disease Control and Preven-
tion (CDC) [3].

Spirometry is used to diagnose COPD when the forced 
expiratory volume in 1  s/ forced vital capacity (FEV1/
FVC) ratio following bronchodilator test is less than 
0.70. The GOLD staging system is frequently used to cat-
egorize the severity of COPD, but it cannot distinguish 
between its subtypes [4].

The definition of pulmonary emphysema is “dilatation 
of air pockets distal to the terminal bronchioles and per-
manent loss of airway walls.” Emphysema thus looks to 
be a region of relatively lower Housenfield units (HU) 
(lower CT attenuation).

By calculating that is lower than a specific threshold 
of HU, the density mask approach quantifies emphy-
sema. These voxel regions are known as low attenu-
ation areas (LAA), and -950 HU is the most widely 
used agreed value [5].

The size and number of low attenuation areas (LAA) 
visible in COPD on CT scan are determined by low 
attenuation (LA) cluster analysis (D-Value). It can pro-
vide more morphological details about LAA, possibly 
reproducing visual evaluation of emphysema pattern [6].

In the current investigation, we looked at how AI-based 
CT parameters could be used as a potential method for 
determining the severity of the COPD compared to PFTs.

Methods
All patients provided written informed consent for the 
current study authorized by the regional institutional 
ethics committee before taking any data or doing any 
investigations or imaging techniques.

The research was carried out on the CT unit—Radi-
ology and Chest departments at Suez Canal University 
hospital in Ismailia, Egypt, with online remote access to a 
computer-aided detection (CAD) system (Coreline Soft’s 
AVIEW).

Our study was conducted as a descriptive cross-sec-
tional study, lasted two years, from the mid of 2020 to the 
June of 2022, and included 80 patients. Inclusion criteria 
included (a) COPD patients referred for a chest CT scan 
for radiological assessment of morphological disease pat-
tern, and its severity, or patients with COPD referred to 
rule out coexisting malignancy, (b) Patients who were 
referred for a CT chest scan to determine the cause of a 

recent or previous history of dyspnea, wheezy chest, and 
chronic productive cough for more than three months 
were included in our study being clinically suspected to 
have COPD, and (c) patients with COPD clinical diagno-
sis (FEV1/FVC = 0.7) [7].

Exclusion criteria included (a) patients who refused 
to participate in the study, (b) patients with coexisting 
lung carcinoma, (c) patients diagnosed with pneumonia, 
(d) patients with suspected pulmonary nodule, and (e) 
patients performed CT chest with IV contrast [8].

All patients had a history taken (age, smoking index, 
symptoms such as dyspnea and productive cough), 
a spirometer evaluation, and a CT chest without IV 
contrast.

CT Technique
CT imaging was performed using 16 slice scanner, Acti-
vion 16 model TSX-031A-2012 with standard accessories 
(Toshiba Medical Systems).

• CT Protocol:

 CT scan was performed as follows:

• In cranio-caudal direction.
• Inspiratory CT was obtained.
• Started from the apices of the lung to lateral costo-

phrenic sulci.
• Slice thickness = 1 mm.
• 120 kVp, and 80–100 mAs.
• Reconstruction algorithms smooth & sharp.
• Pitch ≤ 1
• No contrast was administrated.
 Patients with breathing difficulties were trained, 

and the scan was performed after breath hold 
practice.

• Post-Processing:
 It was carried out with the help of a pre-installed 

post-processing application/software, namely Core-
line Soft’s AVIEW platform, which is a multiplatform 
software application for medical imaging comput-
ing based on the deep learning convolutional neural 
networks algorithm (CNN). AVIEW Metric’s Chest 
Imaging Platform is an artificial intelligence-based 
precision medical solution that uses a chest CT scan 
to plan a solution that can automatically test for 
COPD and its co-morbidities.

 CNN algorithm was used for deep lobe segmenta-
tion and airway segmentation, saving time per case 
from 40 to 2 min and from 60 to 3 min, respectively 
(Fig. 1).
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• Image Analysis:
 CT parameters for diagnosis of COPD parenchyma-

tous subtype were automatically calculated, and an 
automated report was generated and saved in picture 
archiving and communication system (PACS).

Pulmonary parameters for COPD diagnosis:
1. Density mask methods for diagnosis of parenchymal 

disease (emphysema):
 (i) Low attenuation areas-950 (%LAA-950  HUINS)—
 The emphysema component in COPD was estimated 

using the percentage area of lung less than -950 HU 
(the emphysema index, or% LAA-950) [9] (Fig. 2).

 (ii) D-value (Cluster-size analysis)
 —This represented the emphysema’s cumulative fre-

quency size distribution and estimated the emphy-
sematous areas that congregated to form small to 
large (clustered) regions of emphysema [9].

In this study, cluster sizes were calculated automati-
cally two-dimensionally (as an area  [mm2] using axial 
CT images). There were threshold CT values available 
for tracking LAA. The threshold was set at -950 HU. 
The slopes (D-values) of these relationships with 3D 
techniques at these threshold CT values were used as 
LAA cluster analysis measurements. The smaller the 
LAA, the steeper the slope (increased absolute D-value) 
(Fig. 3).

Spirometry and clinical parameters
A pulmonary function test was performed in accordance 
with the American Thoracic Society (ATS) guidelines to 
assess forced expiratory volume in one second (FEV1) 

and percentage predicted FEV1 (hereafter referred to as 
FEV1%) [10].

Each patient’s dyspnea was assessed using the modified 
medical research council (mMRC) dyspnea scale, which 
is a five-point scale ranging from grade 0–4 [11].

Statistical analysis
All analyses were performed using SPSS version 22.0 
(IBM, Armonk, New York, USA). Significance was 
observed with p value < 0.05.

Variables were tested for pattern of distribution using 
the Kolmogorov–Smirnov test and visual assessment of 
histograms. Data with normal distribution was expressed 
as mean ± standard deviation. Correlation between CT-
based AI parameters and spirometry and dyspnea were 
measured using Pearson correlation coefficient for nor-
mally distributed variables. The receiver operator char-
acteristic (ROC) curve was used to differentiate between 
COPD severity subtypes.

Results
The demographic data of the included population 
(n = 80) revealed that the patients’ mean age was 60 years 
old. There were almost entirely males (97.5%), with only 
two females (2.5%) included (Table  1). According to 
spirometry results, the patients were classified as GOLD 
1: mild (n = 23), GOLD 2: moderate (n = 39), GOLD 3: 
severe (n = 17), and GOLD 4: very severe (n = 1) (Fig. 4). 
The severe group had a significantly higher mean age 
than the mild and moderate groups (73.2 versus 52.6 and 
58.7 years, respectively, p < 0.0001) (Fig. 5).

Fig. 1 a Automatic airway segmentation b Automatic lobe segmentation



Page 4 of 11Saad et al. Egypt J Radiol Nucl Med           (2023) 54:97 

Fig. 2 LAA‑950  HUINS analysis (Emphysema index) of the whole lung, RT and LT lobes separately and segments of each lobe in illustrated table, 
chart and histogram as above. The green coded areas in the coronal image and chart show the lung areas with attenuation less than ‑950 during 
inspiration indicating the emphysema index and its distribution throughout the lung with total percent of 46%

Fig. 3 Cluster size analysis (D‑value) assessment at LAA‑950 through the whole lung, RT and LT lobes separately and segments of each lobe and 
expressed at table, chart and size log–log plot as the cluster sizes were calculated automatically two‑dimensionally (as an area  [mm2].The different 
colors express different sizes of the clusters as those less than 1 mm not colored (transparent) (insignificant), blue colored coded for clusters ranges 
from 1 to 7 mm, green color for cluster size from 7 to 15 mm, and red one for those larger than 15 mm. The log–log plot shows that the steeper the 
slope, the smaller the cluster size
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The ANOVA test was used to identify significant differ-
ences between radiological parameters in relation to the 
severity of COPD stages. Insp. LAA-950 (%) was signifi-
cantly higher in the GOLD 3 group than in the GOLD 2 

and 1 groups. Furthermore, the D-value was significantly 
higher in the GOLD 3 group compared to groups 2 and 1 
(Table 2).

Even though Insp. LAA-950 (%) had a significant nega-
tive relationship with FEV1% and positive relationship 
with dyspnea score, the D-value had a modest negative 
relationship with FEV1% and positive relationship with 
dyspnea score (Table 3).

For the discrimination of moderate from mild COPD, 
the receiver operator characteristic (ROC) curve assess-
ment of Insp. LAA-950 (%) revealed that a threshold 
of ≥ 1.75 was a significant cut-off with a sensitivity of 60% 
and specificity of 78.3% (AUC = 0.750, p = 0.001) (Fig. 6). 
The threshold was ≥ 0.4 with a sensitivity of 90% but a 
specificity of 13% in an effort to obtain the optimum val-
ues of Insp. LAA-950 (%) (Table 4).

For the discrimination of severe from moderate COPD, 
the receiver operator characteristic (ROC) curve assess-
ment of Insp. LAA-950 (%) revealed that a threshold 
of ≥ 19.1 was a significant cut-off with a sensitivity of 78% 
and specificity of 82.1% (AUC = 0.860, p < 0.0001) (Fig. 7). 
The threshold was ≥ 11 with a sensitivity of 88.9% but a 
specificity of 64.1% to obtain the optimum values of Insp. 
LAA-950 (%) (Table 5).

On the one hand, with a threshold of ≥ − 5.0, the (ROC) 
curve analysis of the D-value for differentiating between 
moderate and mild COPD revealed a sensitivity of 
77.0% and a specificity of 48.0% (AUC = 0.573, p = 0.340) 
(Fig.  8). On the other hand, the threshold was ≥ − 5.3 
when setting near-90% sensitivity (with 39.1% specific-
ity), and the threshold was ≥ − 3.8 when setting near-90% 
specificity (with 18.0% sensitivity) (Table 6).

However, the ROC curve of D-value for the discrimi-
nation of severe from moderate COPD showed a thresh-
old of ≥ − 4.2 with a sensitivity 77.8% and specificity 
60.0% (AUC = 0.705, p = 0.013) (Fig.  9). The threshold 
was ≥ − 4.3 when setting near-90% sensitivity (with 54.0% 
specificity) and the threshold was ≥ − 3.5 when setting 
near-90% specificity (with 28.0% sensitivity) (Table 7).

Discussion
In general, smoking frequency increases the inflamma-
tory and structural changes in the airways, as well as 
the severity of COPD [12]. Our finding shows that all 
patients (100%) in the severe group, 64.1% in the moder-
ate group, and 21.7% in the mild group were heavy smok-
ers (p < 0.0001) which emphasized this observation. Only 
one (4.3%) of our COPD patients did not smoke.

In our study, we observed that the inspiratory (Insp.) 
low attenuation areas LAA-950 (%) (or emphysema 
index) was a highly significant AI-based CT param-
eter that used for emphysema quantification. We found 
that the patients with severe COPD (28.5 ± 11.5%) had 

Table 1 Baseline data of the included COPD patients (n = 80)

COPD patients (n = 80)

Age (years) 60.0 ± 11.7

Male 78 (97.5%)

BMI 22.1 ± 3.6

Insp. LAA‑950 (%) 12.7 ± 6.0

D‑value − 4.4 ± 1.0

Classification of severity of dyspnea according to MMRC dyspnea scale

 Grade (MMRC) 1 13 16.3

 Grade (MMRC) 2 34 42.5

 Grade (MMRC) 3 20 25.0

 Grade (MMRC) 4 13 16.3

Fig. 4 Severity of COPD according to FEV1 (%) in the included 
patients (n = 80)

Fig. 5 Mean age of the mild, moderate, and severe groups of COPD 
patients
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significantly higher values of Insp. LAA-950 (%) (cut-
off value ≥ 19.1)  than mild (2.9 ± 2.4%) and moder-
ate (11.3 ± 11.2%) cases (cut-off value ≥ 1.75) (F = 37.0, 
p < 0.0001). In same direction, Anazawa et  al. [13] 
reported that the values of Insp. LAA-950 (%) were 
significantly higher in late cases with advanced COPD 

(11.7 ± 8.8%) than in early cases with mild COPD 
(6.8 ± 10.4%) (p < 0.0001).

In Kumar et al. [14], LAA of a 12.2 cut-off value had 
76.5% sensitivity and 72.7% specificity in the prediction 
of FEV1 < 50% (GOLD 3).

Furthermore, other studies performed by Lynch, AL-
Qaisi,Ostrige and Wilkinson confirmed these findings, 
stating that the Insp. LAA-950 (%) is used to assess the 
severity of COPD [8, 15].

Tanabe et al. [16] found that Insp. LAA-950 (%) grad-
ually increases over time in COPD patients. Several 
previous studies revealed that threshold levels around 
-950 Hounsfield units (HU) for LAA% provide strong-
est correlation with pathologic extent (severity) of 
emphysema [17, 18].

We found that Insp. LAA-950 (%) was significantly 
correlated with FEV1 (r = − 0.75, p < 0.0001). Several 
comparable studies discovered statistically significant 
correlations between Insp. LAA-950 (%) and FEV1 
[19–28].

Additionally, there were strong links between Insp. 
LAA-950 (%) and COPD clinical outcomes [20, 29, 30].

However, one disadvantage of the LAA technique is 
that it is solely based on CT voxel attenuation and does 
not use morphological information provided by CT.

Emphysematous lesions exhibit fractal geometry in 
addition to spatial heterogeneity. This is determined by 
identifying emphysematous clusters, which are discrete 
and isolated zones of emphysema.

In our study, we assessed the cumulative frequency 
size distribution of emphysema and estimated the 
emphysematous areas that congregated to form small 
to large (clustered) regions of emphysema.

In the study by Fan et al. [31], cluster sizes were cal-
culated automatically two-dimensionally (as an area 
 [mm2] using axial CT images).

We used a 2D D-value of -950 HU in our study. The 
smaller the LAA, the steeper the slope (increased abso-
lute D-value). In the current analysis, D-value was sig-
nificantly correlate with FEV1(r = − 0.469, p < 0.0001).

Our study supports that D-value indicative of 
severity as it significantly discriminated severe 
from moderate COPD (cut-off ≥ − 4.2, sensitivity 
77.8%, specificity 60.0%, AUC = 0.705, p = 0.013), but 

Table 2 CT parameters of the studied groups:

* Significant p value < 0.05

** Highly significant p value < 0.01

Variables Mild (n = 23) Moderate (n = 39) Severe (n = 18) F p value

Insp. LAA‑950 (%) 2.9 ± 2.4 11.3 ± 11.2 28.5 ± 11.5 37.0  < 0.0001**

D‑value − 5.1 ± 1.4 − 4.4 ± 0.76 − 3.8 ± 0.58 7.8 0.020*

Table 3 Correlations between CT values and FEV1 and dyspnea 
scale

* Significant p value < 0.05

** Highly significant p value < 0.01

Variables Correlation coefficient 
(r)

p value

FEV1

 Insp. LAA‑950 (%) − 0.753  < 0.0001**

 D‑value − 0.469  < 0.0001**

Dyspnea scale

 Insp. LAA‑950 (%) 0.690  < 0.0001**

 D‑value 0.477  < 0.0001**

Fig. 6 ROC curve of Insp. LAA‑950 (%) for the discrimination of 
moderate from mild COPD
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insignificantly discriminated moderate from mild 
COPD (cut-off ≥ − 5.0, sensitivity 77.0%, specificity 
48.0%, AUC = 0.573, p = 0.340).

A previous study examined the clinical feasibility of 
Insp. LAA% -950 HU and D-values of cluster analysis at 
three different CT value thresholds (-856, -910, and -950 
HU) in the evaluation of COPD. LAA% had a stronger 
correlation with FEV1% (− 0.55, p < 0.0001) than D-value 
(− 0.27, p < 0.0001) [6].

With the conclusion that low attenuation cluster analy-
sis provides incremental information regarding physi-
ologic severity of COPD, independent of LAA%, Nambu 
et al. found that 2D D-value-910 HU had the highest cor-
relation coefficients with FEV1%, (r = − 0.350, p < 0.001), 
and 2D D-value-950  HU had marginal correlation coef-
ficients (r = − 0.196, p = 0.053) [6].

Several earlier studies have employed cluster analysis of 
LAA to assess the severity of emphysema [6].

Mishima et  al. discovered that COPD patients with 
normal LAA% had significantly lower D-values (i.e., 
gentler slopes, larger LAA predominant) than healthy 
subjects. They hypothesized that in COPD patients, 
small LAA coalesce to form larger LAA and D-value can 
become smaller without increasing LAA% [32]. Giet-
ema HA et  al. [33] confirmed that visually assessed air 
trapping regions had smaller cluster sizes for the same 
LAA% as those without air trapping. Another analysis 
confirmed that not only enlargement of the LAA, but 
also coalescence of adjoining LAA caused progression of 
emphysema in patients with acute exacerbation (16).

These latter reports, along with this study, reinforce 
the idea that cluster analysis, by estimating sizes of 
LAA that density mask approach cannot assess, namely 
LAA%, gives additional information to that technique. It 
is important to consider the LAA threshold level when 
determining the severity of emphysema.

Our study’s strengths include its homogeneity by using 
a single CT scanner machine.

Another significant strength of our research is that 
we were able to generate cut-off values for quantitative 
CT parameters with high diagnostic accuracy, which 

Table 4 Discriminating thresholds and diagnostic performance of Insp

LAA-950 (%) for distinguishing moderate from mild COPD using forced expiratory volume in the first second (FEV1) spirometric parameter as a reference (gold) 
standard

ROC curve  receiver operating characteristics curve, AUC  area under ROC curve, CI  confidence interval, TP true positive, FN false negative, TN true negative, FP false 
positive

* Significant p value < 0.05

** Highly significant p value < 0.01

Coordinates of ROC curve Threshold for achieving optimal 
sensitivity and specificity

Threshold for achieving near-90% 
sensitivity

Threshold for 
achieving near-90% 
specificity

AUC 0.750

Standard error 0.061

95%CI 0.630–0.870

p value 0.001**

Cut‑off  ≥ 1.75  ≥ 0.4  ≥ 1.75

Sensitivity

 TP/(TP + FN) 60.0% 89.7% 60.0%

Specificity

 TN/(TN + FP) 78.3% 13.0% 78.3%

Fig. 7 ROC curve of Insp. LAA‑950 (%) for the discrimination of 
severe from moderate COPD
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can provide useful information to radiologists. The all-
diagnostic values of the CT parameters were calculated 
according to a reference standard spirometry param-
eter (FEV1) which gives accurate results of the tested 
variables.

Finally, we attempted to eliminate confounding fac-
tors by excluding cases with lesions suspicious for malig-
nancy, which can affect overall lung density and confound 
our findings.

This study also had some limitations, and the gener-
alizability of our study results to the COPD population 
is hampered by the relatively small number of patients 
(n = 80), but with a sufficient representative sample in 
each subgroup of COPD severity (mild = 23, moder-
ate = 39, and severe = 18).

Standardization, optimization, and simplification of 
methods for quantifying the various components of 
COPD are required.

Table 5 Discriminating thresholds and diagnostic performance of Insp

LAA-950 (%) for distinguishing severe from moderate COPD using forced expiratory volume in the first second (FEV1) spirometric parameter as a reference (gold) 
standard

ROC curve  receiver operating characteristics curve, AUC  area under ROC curve, CI  confidence interval, TP true positive, FN false negative, TN true negative, FP false 
positive

* Significant p value < 0.05

** Highly significant p value < 0.01

Coordinates of ROC curve Threshold for achieving optimal 
sensitivity and specificity

Threshold for achieving near-90% 
sensitivity

Threshold for 
achieving near-90% 
specificity

AUC 0.860

Standard error 0.048

95%CI 0.766–0.955

p value  < 0.0001**

Cut‑off  ≥ 19.1  ≥ 11.0  ≥ 26.1

Sensitivity

 TP/(TP + FN) 78.0% 88.9% 66.7%

Specificity

 TN/(TN + FP) 82.1% 64.1% 89.7%

Fig. 8 ROC curve of D‑value for the discrimination of moderate from 
mild COPD

Fig. 9 ROC curve of D‑value for the discrimination of severe from 
moderate COPD
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Furthermore, quantitative CT has several limitations. 
The measurement of CT attenuation of the lung by dif-
ferent scanner models, reconstruction algorithms, and 
CT protocol parameters such as voxel size, tube voltage, 
and tube current-exposure time product vary signifi-
cantly. Furthermore, variations in inspiratory and expira-
tory lung volumes, as well as acquisition techniques, 
influence CT attenuation values. However, the strong 
correlations found in this study suggest that the variation 
caused by these technical factors may be minimal.

Conclusions
Inspiratory LAA-950% and D-value were found to be 
significantly related to COPD severity as measured by 
dyspnea scale and spirometry. That can help to guide 
individualized management strategies and improve dis-
ease outcomes in COPD as it provide quantitative infor-
mation and structural assessment which facilitate early 
and precise diagnoses.

Table 6 Discriminating thresholds and diagnostic performance of D‑value for distinguishing moderate from mild COPD using forced 
expiratory volume in the first second (FEV1) spirometric parameter as a reference (gold) standard

ROC curve receiver operating characteristics curve, AUC area under ROC curve, CI confidence interval, TP true positive, FN false negative, TN true negative, FP false 
positive

Coordinates of ROC curve Threshold for achieving optimal 
sensitivity and specificity

Threshold for achieving near-90% 
sensitivity

Threshold for 
achieving near-90% 
specificity

AUC 0.573

Standard error 0.085

95%CI 0.406–0.740

p value 0.340

Cut‑off  ≥ − 5.0  ≥ − 5.3  ≥ − 3.8

Sensitivity

 TP/(TP + FN) 77.0% 89.7% 18.0%

Specificity

 TN/(TN + FP) 48.0% 39.1% 87.0%

Table 7 Discriminating thresholds and diagnostic performance of D‑value for distinguishing severe from moderate COPD using 
forced expiratory volume in the first second (FEV1) spirometric parameter as a reference (gold) standard

ROC curve = receiver operating characteristics curve, AUC area under ROC curve, CI confidence interval, TP true positive, FN false negative, TN true negative, FP false 
positive

* Significant p value < 0.05

** Highly significant p value < 0.01

Coordinates of ROC curve Threshold for achieving optimal 
sensitivity and specificity

Threshold for achieving near-90% 
sensitivity

Threshold for 
achieving near-90% 
specificity

AUC 0.705

Standard error 0.070

95%CI 0.569–0.842

p value 0.013*

Cut‑off  ≥ − 4.2  ≥ − 4.3  ≥ − 3.5

Sensitivity

 TP/(TP + FN) 77.8% 88.9% 28.0%

Specificity

 TN/(TN + FP) 60.0% 54.0% 89.7%
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