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Abstract 

Background  It is important to differentiate cervical lymph nodes. So, this study aims to assess the ability of diffusion 
tensor imaging (DTI) in differentiating cervical lymphadenopathy (LNs).

Materials and methods  This retrospective study was done upon 100 patients with cervical LNs who had DTI 
over a year period. The fractional anisotropy (FA) and the mean diffusivity (MD) values of LNs were measured.

Results  This study was done upon 100 patients (the mean age 45 ± 2 years (standard deviation [SD]), 63 men). The 
mean MD and FA of the malignant LNs (0.83 ± 0.14 × 10−3 mm2/s, 0.26 ± 0.07) were significantly different; (P = 0.001) 
than those of benign LNs (1.32 ± 0.33 × 10–3 mm2/s, 0.22 ± 0.09). MD of 0.94 × 10–3 mm2/s and FA of 0.21 were used 
to discriminate malignant and benign LNs, AUC 0.892 and 0.758, and 84% and 71% accuracy, respectively. Combined 
parameters revealed AUC of 0.914 and 81%. The mean MD and FA of the metastatic LNs (0.86 ± 0.12 × 10–3 mm2/s, 
0.25 ± 0.07) were statistically different; (P = 0.001, 0.03) than those of lymphomatous nodes (0.66 ± 0.13 × 10–3 mm2/s, 
0.28 ± 0.02). The AUC of the MD and FA used to distinguish metastatic from lymphomatous nodes was 0.82, 0.711, 
(0.71 × 10–3 mm2/s, 0.27) cutoff values, and 95.3%, 73.4% accuracy, respectively. Combined parameters revealed 
0.824 AUC, 95.3% accuracy, 98.2% sensitivity, and 75% specificity. There was a significant statistical difference in MD 
between well-moderately (P = 0.001) versus poorly differentiated metastatic LNs and stages I and II (P = 0.018) ver-
sus stages III and IV of metastatic cervical LNs.

Conclusions  Combining FA and MD is a promising technique that can play a major role in distinguishing different 
categories of cervical LNs.
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Background
Assessment of cervical LNs is one of the most challeng-
ing issues for the radiologist. When a LN is detected, 
the radiologist has to delineate whether it is of benign or 
malignant nature [1, 2]. Ultrasound together with fine-
needle aspiration biopsy (FNAC) was widely used, yet it 
is a relatively invasive, operator-dependent modality that 
has a tendency to false-positive and -negative results [3, 

4]. Differentiation between different types of cervical LNs 
is difficult with conventional computed tomography (CT) 
and magnetic resonance (MR) [5–7].

Advanced MR imaging modalities as post-contrast, 
dynamic MRI, MR spectroscopy, as well as arterial spin 
labeling are used to add in characterization, but unfortu-
nately, their value is relatively limited [7–11]. Advanced 
CT techniques as CT perfusion and dual-energy CT 
carry the risks of radiation exposure and contrast admin-
istration, and PET-CT is costly, not widely available and 
of low spatial resolution [12, 13].

Pathological diagnosis is the ideal modality for the eval-
uation of the nature of cervical LNs, but it may be incon-
clusive, or of inadequate samples. Fine-needle aspiration 
biopsy is immensely used, yet it is a relatively invasive, 
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operator-dependent modality with a relatively high rate 
of inaccurate results [14].

Diffusion-weighted imaging (DWI) is based mainly on 
the Brownian mobility of water protons in different tis-
sues, which is controlled by the cellular and extra-cellular 
structures of these tissues, so it has the ability to discrim-
inate different tissues compartments at a cellular level 
[15–20]. Variable studies reported the benefit of DWI 
in distinguishing between subtypes of LNs in different 
parts of the body [21–25] and in cervical LNs that might 
be associated with artifacts in the neck and head region 
[26–30].

Diffusion tensor imaging (DTI) utilizes the benefit of 
water flow and diffusivity within tissue within the three 
primary directions. This motion is relatively decreased in 
the plane perpendicular to the cellular membranes. The 
most popular parameters of DTI are FA and MD. The 
MD delineates the mobility and flow rate of the water 
molecules as the cellularity within the lesion is the major 
goal of pathological classification of lesions with DTI. The 
relation between the degree of cellularity and MD value 
is negative. The FA delineates the orientation of micro-
structures and nearby different tissues [31–33].

Diffusion tensor evaluates the water protons motion in 
tissues as well as their spatiality. The protons that move 
only in a single direction are called anisotropic and their 
FA equals 1. The protons that move in any direction, in 
the same manner, are called isotropic and their FA equals 
0. A highly cellular tumor is anticipated to have both; low 
diffusivity and anisotropy as it has limited extra-cellular 
space, whereas a low cellular tumor that is mostly benign 
might have relatively higher diffusivity and high anisot-
ropy [34–36]. Few studies discuss the reliability of DTI in 
the valuation of neck and head malignancies, distinguish-
ing recurrent neck and head cancer from post-treatment 
changes, and characterization of salivary gland tumors 
[36–40].

Aim of the work is to assess the role of DTI in charac-
terization of cervical LNs.

Materials and methods
Patients
This research was approved by the institutional review 
board, and the patients’ informed consent was waived 
because this was a retrospective study. This retrospective 
study was done on 105 patients from 2019 to 2020 with 
cervical LNs. The criteria of inclusion were patients with 
cervical LNs referred for MR suspected to be malignant. 
Five patients were excluded from this study because of 
motion artifacts. So, the included patients in the study 
were 100 patients (63 males and 37 females, with their 
ages ranging from 18 to 72 years, the mean age 45 ± 2 
years). The definitive diagnosis was obtained by surgical 

biopsy and core biopsy that done 7–14 days after MRI. 
All patients had routine imaging as well as DTI of the 
neck and head.

Methods
MR imaging
Magnetic resonance images were obtained on a 1.5-T 
scanner (Ingenia Philips, Philips Medical Systems, Best 
Netherlands) with a self-shielding gradient set (30-
mTm maximum gradient strength, 120 T/m/s rate) and 
a 16-channel neurovascular coil. All the patients had 
T1-weighted image (TR/TE = 800/15 ms) and T2-fast 
spin-echo weighted image (TR/TE = 6000/80 ms) 
with these parameters; thickness of section  5 mm, gap 
between slices 1.5 mm, a field-of-view (FOV) 25–30 cm2, 
and matrix of acquisition 256 × 224.

Diffusion tensor imaging
Diffusion tensor MR imaging of the neck has been 
obtained through a single-shot echo-planar sequence 
(TR/TE 3200/90 ms) together with parallel imag-
ing. Gradients of diffusion had been acquired along 
32 axes, b-values of 0 and 1000 s/mm2 were used, 
matrix = 92 × 88, FOV = 250 × 170 mm2, and voxel dimen-
sions = 2.43 × 2.54 × 2.5 mm3. Forty-eight slices have been 
obtained, with a thickness of 2.5 mm, no gap. The full 
scan time was about 7–8 min.

Image analysis
Analysis of the images was carried out by one neck and 
head radiologist with 10 years’ experience who was blind 
to the definitive results. Co-registration of DTI maps 
with T2 images was performed for correct positioning of 
the region of interest (ROI). The largest LN that showed 
homogenous texture in each patient was selected for 
analysis. The ROI was placed at DTI map-guided with 
T2-weighted imaging around the inner border of the LN 
using the electronic cursor (Fig. 1). The size of the ROI 
varied between 4.4 and 19.6 mm2 (mean 9.4 mm2).

Statistical analysis
The statistical analysis of these data was done using the 
Statistical Package for the Social Sciences version 22 
(SPSS Inc., Chicago, Ill, USA). The mean and standard 
deviation of MD and FA of metastatic, lymphomatous, 
and benign LNs have been measured. Analysis of these 
data was done so as to test the significant statistical dif-
ferences. The Student’s t-test has been used for compari-
son between MD and FA of LNs. P-value < / = 0.05 was 
considered significant. The receiver operating character-
istic (ROC) curve was used to detect the cutoff points 
of MD and FA utilized in differentiating malignant from 
benign LNs and metastatic from lymphomatous LNs 
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with computation of area under the curve (AUC), accu-
racy, specificity, and sensitivity.

Results
The causes of LNs pathogenesis were; metastatic (n = 56), 
lymphoma (n = 8), and benign (n = 36). Metastatic LNs 
were secondary to squamous cell carcinoma of the 
mouth; (n = 24), larynx; (n = 8), oropharynx; (n = 8), naso-
pharynx; (n = 8), and sino-nasal; (n = 8). Lymphomatous 
nodes were non-Hodgkin’s lymphoma (NHL); (n = 5) and 
Hodgkin’s disease (HD); (n = 3). Benign LNs were reac-
tive (n = 32) and granulomatous (n = 4) either sarcoidosis 
(n = 2) or tuberculous (n = 2). Table 1 shows MD and FA 
of cervical LNs. Table 2 shows the ROC results with cut-
off points of MD and FA used in differentiating cervical 
LNs.

The mean MD of malignant LNs (0.83 ± 0.14 × 10−3 
mm2/s) was statistically lower than (P = 0.001) the MD 
of benign LNs (1.32 ± 0.33 × 10−3 mm2/s). The mean 
FA of malignant cervical LNs (0.26 ± 0.07) was statisti-
cally higher than (P = 0.02) that of benign cervical LNs 
(0.22 ± 0.09). The cutoff points of MD and FA used to dis-
criminate benign from malignant LNs were 0.94 × 10−3 
mm2/s, 0.21 with AUC equals 0.892, 0.758, accuracy 
of 84%, 71%, specificity of 88.9%, 50%, and sensitiv-
ity of 81.2%, 82.8%, respectively. Combined parameters 

revealed AUC of 0.914, with accuracy of 81%, specificity 
of 77.8%, and sensitivity of 92.2% (Fig. 2).

The mean MD of metastatic LNs (0.86 ± 0.12 × 10−3 
mm2/s) was statistically higher than (P = 0.001) the 
lymphoma (0.66 ± 0.13 × 10−3 mm2/s). The mean FA of 
metastatic LNs (0.25 ± 0.07) was statistically lower than 
(P = 0.03) lymphomatous nodes (0.28 ± 0.02). On the 
ROC curve; the MD and FA area under curve used to dis-
tinguish metastatic from lymphomatous nodes were 0.82, 
0.711 with the cutoff values of 0.71 × 10–3 mm2/s, 0.27, an 
accuracy of 95.3%, 73.4%, sensitivity of 98.2%, 76.8%, and 
specificity of 75%, 50%, respectively. Combined param-
eters resulted in an AUC of 0.824, with an accuracy of 
95.3%, sensitivity 98.2%, and specificity 75% (Fig. 3).

Fig. 1  Region of interest definition of metastatic cervical LNs. A Axial 
T2 image displays enlarged left-sided neck LN. B DTI map displays 
enlarged cervical LN with calculated MD value of 0.91 × 10−3mm2/s 
and FA of 0.53

Table 1  Mean, SD, minimum, and maximum of MD (× 10–3 
mm2/s) and FA of malignant, benign, metastatic, lymphomatous, 
well-moderately, poorly differentiated, and different stages of 
cervical lymph nodes

MD FA

Malignant (n = 64) 0.83 ± 0.14 0.26 ± 0.07

Benign (n = 36) 1.32 ± 0.33 0.22 ± 0.09

P value 0.001 0.02

Metastatic (n = 56) 0.86 ± 0.12 0.25 ± 0.07

Lymphoma (n = 8) 0.66 ± 0.13 0.28 ± 0.02

P value 0.001 0.03

Well-moderate differentiated (n = 39) 0.81 ± 0.06 0.26 ± 0.08

Poorly differentiated (n = 17) 0.96 ± 0.16 0.23 ± 0.04

P value 0.001 0.23

Stages I and II (n = 15) 0.88 ± 0.13 0.22 ± 0.04

Stages III and IV (n = 41) 0.80 ± 0.05 0.26 ± 0.08

P value 0.018 0.69

Table 2  Validity of MD (× 10–3 mm2/s) and FA in characterization 
of cervical lymph nodes

AUC​ Cutoff Sensitivity Specificity Accuracy

Malignant versus benign

MD 0.892 0.94 81.2 88.9 84.0

FA 0.758 0.21 82.8 50.0 71.0

Combined 0.914 92.2 77.8 81.0

Metastatic versus lymphoma

MD 0.820 0.71 98.2 75.0 95.3

FA 0.711 0.27 76.8 50.0 73.4

Combined 0.824 98.2 75.0 95.3

Well-moderate versus poorly differentiated

MD 0.767 0.84 76.5 82.1 80.4

Stages I and II versus III and IV

MD 0.72 0.78 82.9 60.0 76.8
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The mean MD of well-moderately differentiated meta-
static LNs (n = 39) (0.81 ± 0.06 × 10–3 mm2/s) was sta-
tistically less than (P = 0.001) the poorly differentiated 
metastatic LNs (n = 17), (0.96 ± 0.16 × 10–3 mm2/s). The 
mean FA of well-moderately differentiated (0.26 ± 0.08) 
was higher than (P = 0.23) that of poorly differenti-
ated metastatic LNs (0.23 ± 0.04) but did not reach a 

significant value (P = 0.23). On ROC curve analysis, the 
AUC of MD utilized to distinguish well-moderately from 
poorly differentiated metastatic LNs was 0.767 with cut-
off point 0.84 × 10–3 mm2/s, an accuracy 80.4%, sensitiv-
ity 76.5%, and specificity 82.1% (Fig. 4).

The mean of MD of metastatic LNs with stages I 
and II (n = 15) [0.88 ± 0.13 × 10–3 mm2/s] was more 

Fig. 2  ROC curve of MD and FA of malignant versus benign LNs. A The cutoff value of MD utilized to distinguish malignant from benign 
LNs is 0.94 × 10–3 mm2/s with AUC of 0.892, an accuracy of 84%, specificity of 88.9%, and sensitivity of 81.2%. B The cutoff value of FA applied 
to distinguish malignant from benign LNs is 0.21 with an AUC 0.758, an accuracy 71%, specificity 50%, and sensitivity 82.8%. C Combined 
parameters show AUC 0.914, with an accuracy 81%, specificity 77.8%, and sensitivity 92.2%
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(P = 0.018) than LNs of stages III and IV malignancy 
(n = 41) [0.80 ± 0.05 × 10–3 mm2/s]. The mean FA of 
metastatic LNs with stages I and II (0.22 ± 0.04) was 
lower than the metastatic LNs with stages III and 
IV (0.26 ± 0.08) but not reach to a significant level 
(P = 0.69). The AUC of MD utilized to distinguish meta-
static LNs of stages I, II and stages III, IV was 0.72 with 

a cutoff point 0.78 × 10–3 mm2/s, an accuracy 76.8%, 
sensitivity 82.9%, and specificity 60% (Fig. 5).

Discussion
The major parameters in this research were MD, and FA 
were used for characterization of cervical LNs. Malignant 
cervical LNs had restricted diffusion with higher FA, 

Fig. 3  ROC curve of MD and FA of metastatic versus lymphomatous LNs. A The cutoff value of MD applied to distinguish metastatic LNs 
from lymphomatous LNs is 0.71 × 10–3 mm2/s with AUC 0.820, an accuracy 95.3%, sensitivity 98%, and specificity 75%. B The cutoff value of FA 
applied to distinguish metastatic from lymphomatous LNs is 0.27 with AUC 0.711, accuracy 73.4%, sensitivity 76.8%, and specificity 50%. C 
Combined parameters show AUC of 0.824, with accuracy 95.3%, sensitivity 98.2%, and specificity 75%
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and benign LNs had unrestricted diffusion with lower 
FA. Metastatic cervical LNs revealed a higher MD and 
lower FA compared to lymphomatous nodes, and there 
was a significant statistical difference between MD of 

well-moderately differentiated versus poorly differenti-
ated metastatic nodes and between metastatic nodes 
with stages I and II versus stages III and IV.

Malignant cervical LNs showed decreased MD com-
pared with reactive cervical LNs, likely because of the 
more free water motion in reactive and the more cellu-
larity in malignant LNs. As diffusion within malignant 
cervical LNs is blocked by the cellular membranes and 
macromolecular structures, benign LNs show limited cell 
mitosis rendering reduced cell concentration that would 
be evaluated as an elevation in the MD parameter for the 
enlarged LN [9–11, 23]. Previous studies concluded that 
MD for malignant tumors is less than those for benign 
lesions [35–40]. Another research found that qualita-
tive DWI together with the conventional images allowed 
diagnosis of malignant LNs with sensitivity 94% and 
specificity 100% [38].

In this study, FA of malignant LNs was remarkably 
higher than benign cervical LNs. This may be attributed 
to that malignant LNs have high cellularity, which may 
lead the water molecules to flow and diffuse with a higher 
degree of directionality, in the contrary to non-neoplas-
tic cervical LNs. One recent study stated that there was 
a significant statistical variation in FA of oral cancer 
compared to the normal tissue and between metastatic 
and non-metastatic cervical LNs [34]. Another research 
added that recurrent neck and head malignancy shows 
a more FA than post-treatment changes [38]. The com-
bination of MD and FA of the LNs revealed the highest 
accuracy in distinguishing benign from malignant LNs. A 
recent study reported that combined MD and FA help in 
the definition of parotid neoplasms and differentiation of 
parotid malignancy from benign tumors [40].

In this research, there was a significant statistical vari-
ation in MD and FA between metastatic and lymphoma-
tous LNs with lower MD and more FA of lymphomatous 
than metastatic LNs, and combination of FA and MD 
increased accuracy for distinguishing metastatic from 
lymphomatous nodes. The previous studies reported that 
lymphomatous nodes showed lower MD as lymphoma 
has greater cellularity, much larger nuclei and also, and 
little extra-cellular space compared to metastatic nodes 
[41–43].

In this study, there was a significant variation in MD 
between well-moderately versus poorly differentiated and 
lower versus high stages of metastatic LNs; however, the 
FA showed an insignificant difference. The degree of dif-
ferentiation and staging of cervical LNs in patients with 
head and cervical malignancy are important for treat-
ment planning and prognosis with a bad prognosis of 
poorly differentiated and higher stage of metastatic LNs 
[2–5]. The previous studies reported significant statisti-
cal variation in MD of the different stages and grading of 

Fig. 4  ROC curve of MD for the degree of differentiation 
of metastatic LNs. The cutoff value of MD applied to categorize 
well-moderate from poorly differentiated metastatic LNs is 0.84 × 10–3 
mm2/s, AUC 0.767, accuracy 80.4%, sensitivity 76.5%, and specificity 
82.1%

Fig. 5  ROC curve of MD for the staging of metastatic LNs. The cutoff 
value of MD 0.78 × 10–3 mm2/s used to differentiate metastatic 
LNs of stages I, II and stages III, IV with AUC 0.72, accuracy 76.8%, 
sensitivity 82.9%, and specificity 60%
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cervical LNs due to increased cellularity and fewer spaces 
within metastatic LNs with a higher stage and less degree 
of differentiation [26–30]. One recent study stated that 
there was a significant inverse correlation of FA with his-
tological grades of metastatic cervical LNs [34].

There were a number of limitations to this study. 
Firstly, the patients’ population was a small collection of 
LNs with different pathologies. Future multi-center study 
with a larger group of patients who study DTI of certain 
pathology would make results more appropriate. Second, 
the study only used DTI metrics, future studies discuss-
ing multi-parametric imaging together with dynamic 
susceptibility perfusion-weighted MR imaging [44–46], 
arterial spin labeling [47–49], and MR spectroscopy [50] 
with an application of artificial intelligence and deep 
learning [51, 52] will improve the accuracy of MR imag-
ing in the characterization of cervical LNs.

Conclusions
Combination of MD and FA is useful non-invasive imag-
ing parameters which could be helpful in characteriza-
tion of metastatic, lymphomatous, and benign LNs, and 
MD has a role in grading and staging of metastatic cervi-
cal LNs.
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