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Abstract 

Purpose To assess whether the analysis of pulmonary opacities on chest CT scans by AI-RAD Companion, an artificial 
intelligence (AI) software, has any prognostic value.

Background In December 2019, a new coronavirus named SARS-CoV-2 emerged in Wuhan, China, causing a global 
pandemic known as COVID-19. The disease initially presents with flu-like symptoms but can progress to severe 
respiratory distress, organ failure, and high mortality rates. The overwhelming influx of patients strained Emergency 
Rooms worldwide. To assist in diagnosing and categorizing pneumonia, AI algorithms using deep learning and con-
volutional neural networks were introduced. However, there is limited research on how applicable these algorithms 
are in the Emergency Room setting, and their practicality remains uncertain due to most studies focusing on COVID-
19-positive patients only.

Methods Our study has an observational, analytical, and longitudinal design. The sample consisted of patients who 
visited our emergency room from August 5, 2021, to September 9, 2021, were suspected of having COVID-19 pneu-
monia, and underwent a chest CT scan. They were categorized into COVID-19 negative and positive groups based 
on PCR confirmation. Lung opacities were evaluated separately by a team of radiologists and a commercial AI soft-
ware called AI-Rad Companion (by Siemens Healthineers). After 5 months we gathered clinical data, such as hospital 
admission, intensive care unit (ICU) admission, death, and hospital stay.

Results The final sample included 304 patients (144 females, 160 males) with a mean age of 68 ± 19 std. Among 
them, 129 tested negative for COVID-19 and 175 tested positive. We used AI-generated opacity quantification, 
compared to radiologists’ reports, to create receiver operating characteristic curves. The area under the curve ranged 
from 0.8 to 0.9 with a 95% confidence interval. We then adjusted opacity tests to a sensitivity cut-off of 95%. We 
found a significant association between these opacity tests and hospital admission and ICU admission (Chi-Squared, 
P < 0.05), as well as between the percentage of lung opacities and length of hospital stay (Spearman’s rho 0.53–0.54, 
P < 0.05) in both groups.
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Background
A newly identified coronavirus called SARS-CoV-2 
was first reported in Wuhan, China in December 2019. 
It caused a worldwide pandemic of respiratory illness, 
called COVID-19 [1]. The disease frequently starts with 
flu-like symptoms such as fever, dry cough, or fatigue and 
can lead to acute respiratory distress syndrome, organ 
failure, and intensive care unit (ICU) admission with sub-
sequent high mortality rates. The outbreak of the pan-
demic resulted in an overload of Emergency Rooms all 
over the world. Consequently, artificial intelligence (AI) 
algorithms based on deep learning [2] and convolutional 
neural networks [3] (CNN) began to be used both in the 
diagnosis of COVID-19 pneumonia and in the classifica-
tion of other pneumonia and non-pathological findings. 
However, studies on the predictive value of these algo-
rithms applied to the field of emergency radiology are 
scarce, and their future utility is uncertain.

Deep learning is a machine learning [4] technique that 
utilizes neural networks [5] to learn patterns from input 
data, allowing computers to make informed conclusions. 
By using extensive databases and training experiences, 
computers can improve their performance in specific 
tasks. Convolutional neural networks (CNNs) are a pop-
ular type of deep learning architecture, particularly in 
medical imaging, as they are effective in extracting and 
classifying patterns [6]. CNNs analyze input images, 
assigning significance to different features and distin-
guishing between them.

In the diagnosis of COVID-19 pneumonia by CT, seg-
mentation models based on CNNs such as U-Net [7], 
V-Net [8], and 3D U-Net++ [9] have been widely used. 
For example, Ying et al. [10] proposed DeepPneumonia, 
based on the ResNet-50 [11] system for CT studies to 
distinguish COVID-19 pneumonia from bacterial pneu-
monia and healthy patients. On the other hand, Shi et al. 
[12] applied VB-Net [13] to segment CT images and 
then used their own CNN model to diagnose COVID-19 
pneumonia.

We found a lack of extensive research on the predictive 
value of artificial intelligence systems when it comes to 
analyzing pulmonary opacities. The existing studies pri-
marily concentrate on the prognostic usefulness of these 
systems for patients specifically diagnosed with COVID-
19 pneumonia. Notable studies by Zakariaee et  al. [14], 
Gouda W et al. [15], and Mader et al. [16] explored this 

area and revealed an association between AI-based chest 
CT opacity quantification and some prognostic markers 
in these patients.

To fill this knowledge gap, we used an online AI-pow-
ered platform to quantify pulmonary opacities in chest 
CT scans of patients suspected to have COVID-19 pneu-
monia, irrespective of their subsequent negative PCR 
test results. We hypothesized that these algorithms could 
provide valuable prognostic predictions in the field of 
Emergency radiology. The primary aim of our study was 
to investigate the prognostic implications of AI quantifi-
cation in both COVID-19-positive and negative patients. 
Secondarily, we sought to assess the correlation between 
AI-based opacity quantification and radiological reports.

Methods
We conducted an observational, analytical, and longi-
tudinal single-center study. The initial sample consisted 
of patients who consecutively visited our tertiary refer-
ral hospital’s Emergency Room between August 5, 2021, 
and September 9, 2021. This sample consisted of patients 
who were suspected to have COVID-19 pneumonia and 
underwent a non-contrasted chest CT scan. Lung opaci-
ties were assessed independently by both a radiologist 
from a team of emergency radiologists and a commer-
cial AI software known as AI-Rad Companion. We fol-
lowed up with these patients for a period of 5  months 
to observe any negative outcomes. The data collection 
was carried out in January 2022. To evaluate their prog-
nosis, we divided the patients into two groups based on 
their COVID-19 status, which was determined through 
PCR testing. The study was conducted during the SARS-
CoV-2 pandemic and received approval from the hospi-
tal’s ethical committee. Since the study did not involve 
any interventionist design, the committee deemed 
obtaining informed consent unnecessary.

Inclusion criteria

• Ambulatory patients aged 16  years or older sus-
pected to have COVID-19 pneumonia in the adult 
emergency area of our tertiary referral hospital.

• Patients had to undergo their first chest CT scan for 
this specific reason and should not have been diag-
nosed with COVID-19 pneumonia previously. This 

Conclusions During the SARS-CoV-2 pandemic, AI-based opacity tests demonstrated an association with certain 
prognostic markers in patients with suspected COVID-19 pneumonia, regardless of whether a PCR-confirmed corona-
virus infection was ultimately detected.

Keywords Artificial intelligence, COVID-19, SARS-CoV-2, Pneumonia, Chest-CT scan
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aimed to capture early-stage diagnoses and minimize 
potential biases.

• Symptoms and laboratory findings consistent with 
the existing literature were required for eligibility, 
which included shortness of breath, fatigue, cough, 
and fever while laboratory findings included elevated 
C-reactive protein, lymphopenia, and elevated lactate 
dehydrogenase [17]. This ensured that the sample 
reflected the expected characteristics of COVID-19 
pneumonia cases.

Exclusion criteria

• Cases where the AI platform failed to provide neces-
sary variables due to failed segmentation (e.g., previ-
ous lobectomy, motion artifacts, severe pleural effu-
sion). This ensured the reliability of the data obtained 
from the AI platform by excluding cases where the 
algorithm might not perform optimally.

• Patients with interstitial lung disease or thoracic 
tumors impacting the lungs. This maintained the 
study’s focus on COVID-19 pneumonia cases.

• Patients recently hospitalized or with a history of 
hospitalization within the last month for any reason. 
This aimed to minimize confounding factors and iso-
late the effects of COVID-19 pneumonia in the study.

Chest CT scan analysis
For each patient, as soon as a non-contrasted chest CT 
scan was performed and CT images were available, chest 
data sets were anonymized and sent by our system to 

an online AI-powered platform provided by Siemens 
Healthineers [18] called Teamplay© [19]. Through per-
sonal log-in on this platform, we had access to the results 
of AI-Rad Companion, version VA12A [20], a com-
mercial AI software that processes images from non-
contrasted chest CT scans and generates quantitative 
outputs. The authors did not participate in the develop-
ment nor testing of any of this technology.

On the other hand, each radiology report was indepen-
dently created by an experienced emergency radiologist 
from a group of 23 individuals with at least 8  years of 
experience. Importantly, these radiologists were blinded 
to the results generated by AI-Rad Companion, ensur-
ing an unbiased assessment. Additionally, the researchers 
responsible for retrieving the output from the AI plat-
form were also blind to the radiological reports and labo-
ratory findings.

Variables of the study
We codified radiological variables from the radiological 
reports of these patients. We also extracted the parame-
ters provided by AI-RAD Companion, expressed in tables 
for each anonymized chest CT scan. Clinical variables 
such as hospital stay, hospital admission, ICU admission, 
and death were obtained from medical records (Table 1).

Chest CT protocol
Chest CT scans were conducted using STOMATOM.
go.Up CT model manufactured by Siemens Healthineers. 
This CT model has 64 detectors, a power of 32  kW, 
a voltage of up to 130  kV, and a maximum mA of 400. 
The z-coverage of the CT scans was 32 × 0.7 mm. A slice 

Table 1 Variables of the study

The term “any lung” refers to both lungs combined. For example, if the presence of ground glass opacity in the left lung is positive, it is also positive in “any lung.” On 
the other hand, the percentage of ground glass opacity in “any lung” is calculated by the AI using the combined volume of both lungs.

Radiological variables AI-based analysis variables Clinical variables Secondary variables

Codified from the radiology report Obtained from AI-Rad Companion Obtained from the medical record Obtained from the medical record

Presence of ground glass opacity 
in the left lung (yes, no)

Percentage of low opacity in the left 
lung (yes, no)

PCR test result (positive, negative) Age (in years)

Presence of ground glass opacity 
in the right lung (yes, no)

Percentage of low opacity 
in the right lung (yes, no)

Hospital admission (yes, no) Sex (male, female)

Presence of ground glass opacity 
in any lung (yes, no)

Percentage of low opacity in any 
lung (yes, no)

Intensive Care Unit admission (yes, 
no)

Date of CT scan

Presence of consolidation in the left 
lung (yes, no)

Percentage of high opacity 
in the left lung (yes, no)

Death (yes, no)

Presence of consolidation 
in the right lung (yes, no)

Percentage of high opacity 
in the right lung (yes, no)

Hospital stay (in days)

Presence of consolidation in any 
lung (yes, no)

Presence of high opacity in any lung 
(yes, no)

Lung diseases: COVID-19 pneumonia 
(yes or no), non-COVID-19 pneumo-
nia (yes or no), pulmonary edema 
(yes or no)



Page 4 of 12Montoro et al. Egypt J Radiol Nucl Med          (2023) 54:156 

thickness of 1.5  mm was employed for the chest CT 
scans.

AI algorithm
The algorithm used by AI-Rad Companion, along with its 
training and testing datasets, were described by Chaganti 
et al. [21]. Here is a summary of the algorithm’s details:

the AI algorithm begins by generating lung lobe seg-
mentation masks based on chest CT data. It utilizes 
an advanced deep reinforcement learning algorithm 
[22] to identify important anatomical landmarks such 
as the carina bifurcation and sternum tip, which helps 
determine the region of interest (ROI) for the lungs. To 
achieve precise lung segmentation, the lung ROI image 
is resampled to a uniform 2  mm volume and then pro-
cessed using an adversarial Deep Image-to-Image Net-
work (DI2IN) [23]. This network has been specifically 
designed to handle lung segmentation tasks. The result-
ing segmentation mask for the lung ROI is adjusted to 
match the dimensions and resolution of the input data. 
The DI2IN was trained using a diverse dataset consisting 

of over 8000 CT scans from patients in Europe, the USA, 
and Canada, covering a wide range of diseases. Addition-
ally, the network was fine-tuned using 1000 abnormal 
patterns, including cases of interstitial lung disease, non-
COVID-19 pneumonia, and COVID-19 pneumonia.

The detection and quantification of opaque regions 
were performed using the DenseUNet convolutional 
neural network [24]. This algorithm was trained with 900 
CT scans from patients with interstitial pneumonia, non-
COVID-19 pneumonia, and COVID-19 pneumonia. The 
algorithm identifies low-opacity regions that resemble 
ground glass opacities upon visual inspection. Subse-
quently, a -200 UH cut-off is applied to these regions to 
obtain high-opacity regions that visually resemble con-
solidations. However, we could not find a specific ration-
ale for this threshold in the existing literature (Figs. 1, 2, 
3).

Study size and potential biases
The study size was limited by resource constraints, spe-
cifically the duration of the AI-Rad Companion license 

Fig. 1 Visual output by AI-Rad Companion (1). AI-Rad Companion generates a visual representation that shows calculated and outlined lung 
opacities found in a dataset of chest CT scans. The output also includes a 3D reconstruction. The opacities are presented in red for low opacities 
and in fuchsia for high opacities
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Fig. 2 Visual output generated by AI-Rad Companion (2). The image represents low opacities as red and certain vessels as fuchsia, as the AI 
interprets them as high opacities

Fig. 3 Quantitative analysis by AI-Rad Companion. The image shows the complete quantitative output provided by the AI software. Our study 
specifically focuses on the percentage of low and high opacities in the left lung, right lung, and the combined assessment of both lungs
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and the absence of IT support. These factors influenced 
the overall scope and duration of the study. As for poten-
tial biases, we were unable to assess the impact of vac-
cination on the outcomes of patients with COVID-19 
pneumonia because a significant number of patients did 
not have complete data regarding the type and number 
of vaccines they received in their medical records. On the 
other hand, relying on individual observations for each 
radiology report and elevating them to gold standard is a 
potential bias we address in the discussion section.

Statistical analysis
We conducted the statistical analysis using IBM© SPSS© 
Statistics version 26.0.0.0 (64-bit), owned by IBM Corp.© 
and was run on the Windows 11© operating system.

All continuous variables were analyzed with the Kol-
mogorov–Smirnov test to determine their probability of 
fitting the normal distribution.

We constructed ROC curves to elaborate opacity tests 
based on a sensitivity cut-off point of 95%, which we 
considered acceptable at the moment. The AI-Rad Com-
panion’s low-opacity percentage (LOP) was used as a 
predictive condition, with the presence of ground glass 
opacity from the radiology report (yes, no) as the ground 
truth. Similarly, the high-opacity percentage (HOP) was 
used as a predictive condition, with the presence of con-
solidation  (yes, no) as the ground truth. We built sepa-
rate ROC curves for the right lung, the left lung, and both 
lungs combined.

Chi-square tests were conducted to establish the sta-
tistical association between these opacity tests (LOP and 
HOP tests) and hospital admission, ICU admission, and 
death. Spearman correlation was employed as a nonpar-
ametric measure to assess the strength and direction of 
the association between the percentage of each opacity 
type (low and high opacities) and the length of hospital 
stay (in days).

Results
More than 500 chest CT scans were performed in the 
emergency area during the recruitment period, but only 
345 patients met the inclusion criteria. Out of this initial 
sample of consecutive patients, 41 were excluded after 
applying the exclusion criteria. The final sample con-
sisted of 304 patients (144 females, 160 males) with a 
mean age of 68 ± 19 std ranging from 22 to 90 years old. 
Among these, clinical data regarding ICU admission and 
death were available for 295 patients only, as 9 patients 
were lost to follow-up after transferring to another hos-
pital. Consequently, the analysis about those variables is 
solely based on the patients from whom complete data 
was available (Fig. 4).

129 of 304 (42.4%) patients tested negative for COVID-
19 and 175 (57.5%) patients tested positive for COVID-
19, confirmed by a PCR test.

169 of 304 (55.6%) patients were diagnosed with 
COVID-19 pneumonia, 63 (20.7%) had non-COVID 
pneumonia, 22 (9.2%) had lung edema, and the rest had 
miscellaneous conditions such as pulmonary embolism, 
acute exacerbation of chronic obstructive pulmonary dis-
ease, etc. 239 of 304 (78.3%) patients were admitted to 
our hospital after the initial diagnosis in the Emergency 
Department. Of the 295 patients from whom we have 
clinical data, 91 (30.8%) were admitted to the ICU and 37 
(12.5%) died after hospitalization (Table 2).

The Kolmogorov–Smirnov test revealed that none 
of the variables in Table  1 (variables used in the study) 
exhibited normality (P < 0.05).

The receiver operating characteristic curves (ROC) for 
LOP in any lung had an area under the curve (AUC) of 
0.807. As for HOP in any lung, the AUC was 0.861, both 
with a 95% confidence interval. ROC curves are depicted 
in Fig. 5. Quantitative analysis is presented in Table 3.

Opacity tests were adjusted based on the coordinates 
of these curves to achieve a sensitivity cut-off of 95%. 
For instance, the cut-off point for LOP in any lung was 
determined to be 0.76%, while for HOP in any lung, it 
was 0.35%. This means that, if the AI software detects 
low opacity regions occupying at least 0.76% of the com-
bined volume of both lungs, it is considered a positive 
test. These opacity tests demonstrated moderate posi-
tive agreement with the radiological report in detecting 
pulmonary opacities for the right lung, the left lung, and 
both lungs combined, with κ values ranging from 0.43 to 
0.53 (P < 0.05).

The LOP and HOP tests previously generated showed a 
significant, strong, and positive association with hospital 
admission in both the COVID-19 positive and negative 
groups (P < 0.001, Phi > 0.4). For ICU admission, there 
was a significant, weak, and positive association with the 
HOP test in both groups and with the LOP test in the 
COVID-19-positive group only (P < 0.05, Phi > 0.3). In 
terms of death, there was a significant, weak, and posi-
tive association with the HOP test in the COVID-19-pos-
itive group only (P < 0.05, Phi = 0.21). Data  depicted in 
Table 4, Figs. 6, and 7.

There was a statistically significant, positive, and mod-
erate association between both the LOP and HOP values 
in any lung, provided by AI-Rad Companion, and the 
duration of hospital stay in both the COVID-19 negative 
and positive groups. In the COVID-19 negative group, 
the association had a Spearman’s rho of 0.433 for LOP, 
and 0.438 for HOP (P < 0.001). Similarly, in the COVID-
19-positive group, the association had a Spearman’s rho 
of 0.605 for LOP, and 0.596 for HOP (P < 0.001) (Table 5).
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Fig. 4 study flow chart
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Discussion
Our objective was to assess the prognostic implications of 
AI-Rad Companion’s analysis of lung opacities on chest 
CT scans, particularly regarding hospital admission, ICU 
admission, and death. We also aimed to gain insight into 
COVID-19-negative patients initially suspected to have 
COVID-19 pneumonia but later diagnosed with non-
COVID-19 pneumonia or other pulmonary diseases. 
The study was driven by the high patient volume in our 
emergency room at that time and the limited number 
of studies investigating the predictive value of artificial 
intelligence systems in analyzing pneumonia on tho-
racic CT scans in both COVID-19 and non-COVID-19 
patients.

Key results
The opacity tests derived from the ROC curves (LOP and 
HOP tests) with a 95% sensitivity cut-off demonstrated 
moderate agreement with the radiological opacity quan-
tification and provided valuable prognostic information 
for both COVID-19-positive and COVID-19-negative 
patients. We found a significant association between the 
results of both LOP and HOP tests and hospital admis-
sion in both patient groups. The HOP tests also showed 
an association with ICU admission in both groups and 
with death specifically in the COVID-19-positive group. 

Table 2 Clinical variables of the population of the study

Parameter Value

Gender (n [%])

 Male 160 (52.6%)

 Female 144 (47.3%)

Age (mean ± std) 68 ± 19

Age range 22—90

COVID-19 diagnosis (PCR testing)

 Positive 175 (57.5%)

 Negative 129 (42.4%)

Clinical diagnosis (n [%])

 COVID-19 pneumonia 169 (55.6%)

 Non COVID-19 pneumonia 63 (20.7%)

 Lung edema 22 (7.2%)

 Other 50 (16.4%)

Prognostic variables

 Hospital admission 239 (78.3%) out of 304

 ICU admission 91 (30.8%) out of 295

 Death 37 (12.5%) out of 295

Hospital stay (median) 9

Hospital stay (mean ± std) 12 ± 10.9

Fig. 5 ROC curves for low opacity and high opacity percentages. Separated ROC curves are generated for the left lung (blue), the right lung 
(red), and both lungs combined (green). The value of LOP, provided by the AI software, uses the presence of ground glass opacity, provided 
by the radiological report, as ground truth, while the value of HOP, provided by the AI software, uses the presence of consolidation, provided 
by the radiological report, as ground truth. LOP: low opacity percentage; HOP: high opacity percentage
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However, we did not observe an association between LOP 
tests and death. This could be explained by the fact that 
ground glass opacities tend to consolidate as COVID-19 
disease progresses and patients’ conditions deteriorate 
[25]. Additionally, the percentage of AI-detected opaci-
ties was associated with hospital stay in both groups. This 
was proven for both types of opacities.

Similar studies
In a similar study, Chaganti et al. [21] used the same AI 
method for lung segmentation and abnormality quanti-
fication. They also reported a strong correlation between 
their AI predictions and ground truth in COVID-19 

patients, with a Pearson correlation coefficient of 0.92 for 
the percentage of low-opacity (P < 0.001) and 0.97 for the 
percentage of high-opacity (P < 0.001).

In a study conducted by Fang et  al. [26], an AI-based 
framework utilizing deep neural networks was developed 
to segment lung lobes and pulmonary opacities. The 
study revealed a strong association between AI-based 
severity scores in COVID-19 patients and scores evalu-
ated by radiologists (Spearman’s rank = 0.837, P < 0.001). 
The AI method achieved the highest accuracy in predict-
ing ICU admission with an area under the ROC curve 
(AUC) of 0.813 (95% CI [0.729, 0.886]), and in estimating 
mortality with an AUC of 0.741 (95% CI [0.640, 0.837]).

Table 3 AUC for low and high opacities percentages

Significance values lower than 0.05 are shown in bold

The area under the curve for LOP and HOP in the left lung, the right lung, and any lung is always higher than 0.8, with a 95% confidence interval. LOP: low opacity; 
HOP: high opacity.
a Under the nonparametric assumption
b Null hypothesis: true area = 0.5

Test result variable(s) Area Std.  errora Asymptotic Sig.b Asymptotic 95% confidence interval

Lower bound Upper Bound

LOP in any lung 0.807 0.027 < 0.001 0.755 0.860

LOP in the right lung 0.811 0.026 < 0.001 0.760 0.861

LOP in the left lung 0.808 0.026 < 0.001 0.758 0.859

HOP in any lung 0.861 0.020 < 0.001 0.821 0.901

HOP in the right lung 0.873 0.020 < 0.001 0.833 0.914

HOP in the left lung 0.901 0.018 < 0.001 0.867 0.935

Table 4 Chi-Square tests for LOP and HOP tests by Hospital admission, ICU admission, and death

Significance values lower than 0.05 are shown in bold

LOP:low opacity; HOP:high opacity; PCR:Polymerase Chain Reaction; ICU:Intensive Care Unit
a 0 cells (0.0%) have an expected count of less than 5
b At least 1 cell has an expected count of less than 5. In this case, Fisher’s Exact Test value was used

Variables N of Valid cases Pearson Chi-Square Fisher’s Exact Test

Value Asymptotic 
Significance (2-sided)

Exact Sig. (2-sided)

LOP test * Hospital admission (COVID-19 negative group) 129 22.617a < 0.001 < 0.001
LOP test * Hospital admission (COVID-19 positive group) 175 43.957b < 0.001 < 0.001
HOP test * Hospital admission (COVID-19 negative group) 129 31.526a < 0.001 < 0.001
HOP test * Hospital admission (COVID-19 positive group) 175 36.504a < 0.001 < 0.001
LOP test * ICU admission (COVID-19 negative group) 125 1.347b 0.246 0.351

LOP test * ICU admission (COVID-19 positive group) 170 12.683a < 0.001 < 0.001
HOP test * ICU admission (COVID-19 negative group) 125 4.528a 0.033 0.046
HOP test * ICU admission (COVID-19 positive group) 170 18.229a < 0.001 < 0.001
LOP test * death (COVID-19 negative group) 125 0.795b 0.373 0.512

LOP test * death (COVID-19 positive group) 170 2.475b 0.116 0.209

HOP test * death (COVID-19 negative group) 125 1.440a 0.230 0.367

HOP test * death (COVID-19 positive group) 170 7.989a 0.005 0.003
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Mader et al. [16] used an AI model to assess pulmo-
nary opacities in COVID-19 patients and investigate 
their outcomes, including ICU stay and mortality. The 
study found significant correlations (P < 0.001) between 
the extent of COVID-19-like opacities on chest CT and 
the occurrence and duration of ICU stay (R = 0.74 and 
R = 0.81, respectively), the likelihood of a fatal outcome 
(R = 0.56), and the length of hospital stay (R = 0.33, 
P < 0.05).

Gouda et al. [15] used the same software as our study 
and found that the total lung severity score and the 
total score for crazy-paving and consolidation, based 
on the extension of opacities in COVID-19 patients, 
could effectively differentiate between the severe and 
critical groups, as well as the mild group (with 90.9% 
sensitivity, 87.5% specificity, and 93.2% sensitivity, 
87.5% specificity, respectively).

Limitations and possible biases
It is important to acknowledge certain limitations and 
potential biases in our study. Firstly, The AI system used 
in AI-Rad Companion is currently unable to differentiate 
between different types of opacities, such as those caused 
by pneumonia, tumors, atelectasis, or septal thickening. 
Furthermore, the version of the software that we used 
cannot specifically classify pneumonia as either COVID-
19 or non-COVID-19. Other studies, including those 
by Ying et al. [10], Zhan et al. [27], and Wang et al. [28], 
have investigated this issue. The unique circumstances of 
the SARS-CoV-2 pandemic may have influenced the cri-
teria for hospital and ICU admission, as well as the gen-
eralizability of our findings to non-pandemic situations. 
Additionally, we did not consider the potential impact 
of vaccination on patient outcomes due to incomplete 
data in medical records, which could have influenced our 
results. Moreover, due to resource limitations, we were 
unable to assess the interobserver and intraobserver vari-
ability of radiological reports, relying instead on single 
human observations as a benchmark for constructing 
ROC curves, which may introduce variability and subjec-
tivity. Additionally, we could not find the rationale behind 
the AI software’s use of a -200 UH cut-off for classifying 
high-opacity regions, as this information was not availa-
ble in the existing literature. Among the patients included 
in our study who showed lung opacities but tested nega-
tive for COVID-19, there was a variety of lung condi-
tions, mainly non-COVID-19 pneumonia and edema. 
However, it is important to clarify that our study does not 
focus on analyzing the prognosis for these specific condi-
tions. it is worth noting that our study solely included the 
initial chest CT scans, and it may be advisable for future 
research to consider assessing the follow-up scans. These 
limitations should be taken into consideration when 
interpreting the results and generalizing the findings of 
our study.

Generalizability and interpretation
Overall, this study demonstrates the potential value of 
AI-Rad Companion’s analysis of lung opacities in pre-
dicting hospital admission, ICU admission, and death in 
COVID-19 patients, hospitalization in COVID-19-nega-
tive patients, and hospital stay in both groups. However, 
generalization is limited and additional research is neces-
sary outside of a pandemic context to effectively imple-
ment this software in Emergency Rooms. We believe that, 
as these AI algorithms continue to advance, they could be 
used in the screening of patients undergoing chest CT 
scans in the emergency area, facilitating risk stratification 
and predicting the likelihood of hospital admission and 
adverse outcomes.

Fig. 6 LOP test by Hospital admission. There was a higher frequency 
of Hospital admission among those patients with a positive LOP test 
result

Fig. 7 HOP test by Hospital admission. There was a higher frequency 
of Hospital admission among those patients with a positive HOP test 
result
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Conclusions
AI-based opacity tests developed during the SARS-
CoV-2 pandemic showed consistency with the radio-
logical opacity quantification and were associated with 
some prognostic markers in patients with suspected 
COVID-19 pneumonia, even if they later tested nega-
tive for COVID-19 infection through PCR testing.
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