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Abstract 

Background  The discrimination between multiple sclerosis (MS) and other white matter lesions in adults is still 
problematic as multiple diseases have similar clinical and radiological findings, especially at the disease onset. This 
case–control study aimed to evaluate the efficacy of diffusion tensor imaging (DTI) and brain morphometry in the dif‑
ferentiation between adult MS and its magnetic resonance imaging (MRI) mimics.

Methods  Fifty-eight patients (49 women and 9 men; mean age 35.74 ± 11.86 years, range 18–50 years) with clinically 
suspected MS and age- and sex-matched fifteen healthy subjects were included. All study subjects underwent MRI 
using 3D FLAIR, 3D T1 MPRAGE, axial T2WI fast spin echo, and DTI sequences. The included patients were classified 
into MS and mimics groups according to MC Donald’s criteria 2017. Image post-processing using the region of inter‑
est (ROI) analysis for DTI parameters and automated voxel brain morphometry and segmentation was done for all 
study groups. Statistical comparison between the two patient groups and between them and the control group 
was performed regarding DTI indices (fractional anisotropy [FA], mean diffusivity [MD], and relative anisotropy [RA]) 
and brain morphometry parameters (including white matter volume (WMV), grey matter volume (GMV), cerebrospi‑
nal fluid volume (CSFV), T2 lesion load and deep grey matter volume).

Results  A statistically significant difference was observed between the MD, FA, and RA values of the patients 
and control groups. The MD values were significantly higher in the MS than in its mimics with a cut-off value 
of > 1.058 × 10−3 mm2/s (p < 0.001). Compared to the mimics group, the MS patients showed significantly lower WMV 
(33.31 ± 4.40 versus 35.71 ± 4.58; p = 0.047) and higher CSFV (16.38 ± 5.93 versus 13.06 ± 3.09; p = 0.012) with no signifi‑
cant difference regarding the GMV.

Conclusions  MD analysis of DTI, WMV, and CSFV are useful quantitative measurements in confirming the diagnosis 
of MS and differentiating it from its imaging mimics.

Keywords  MS, Mimics, Diffusion tensor imaging, Voxel-based morphometry

Background
Multiple sclerosis (MS) is the most frequent chronic 
demyelinating disease of the central nervous system in 
young adults leading to a long-term disability [1]. MRI 
plays a crucial role in MS diagnosis by demonstrating the 
dissemination in space and time of white matter lesions 
(WMLs), as well as helping to rule out alternative diag-
noses [2].
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Although T2WI hyperintensities are characteristic of 
MS, they are not a specific finding that may result from a 
wide spectrum of white matter pathologies ranging from 
cerebrovascular disease and migraine to neuromyelitis 
optica spectrum disorders (NMOSD) and rarer condi-
tions [3].

Advanced MRI techniques, including diffusion-
weighted imaging (DWI), have demonstrated high 
specificity and sensitivity in detecting white matter 
pathological tissue damage and play an important role in 
highlighting brain microstructural damage which is not 
visible in conventional sequences [4].

Diffusion tensor imaging (DTI) has been widely used 
in the evaluation of MS patients as it enables noninva-
sive evaluation of white matter when myelin and/or axon 
integrity is disrupted [5]. From the DTI, it is possible to 
derive some parameters that are quantitative and invari-
ant to the choice of reference frame, including the mean 
diffusivity (MD), which measures the average molecu-
lar motion independent of any tissue directionality, and 
the fractional anisotropy (FA), which reflects the preva-
lence of diffusivity along one spatial direction [6, 7]. DTI 
can identify abnormal values of MRI indices in specific 
white-matter tracts that may underlie clinical disability in 
MS [8]. Demyelinating plaques destroy white matter fib-
ers which are manifested by increased diffusivity of water 
molecules in DTI as demonstrated by measuring indices 
including MD and FA [9].

Brain atrophy is a characteristic feature of multiple 
sclerosis (MS) that occurs throughout the disease course 
[10]. As brain volume loss in MS patients about 0.7–1% 
per year, highly sensitive techniques are needed to quan-
tify those small changes [11]. Manual based morphom-
etry was used for decades to assess the brain atrophy. 
Automated voxel-based morphometry is widely used 
nowadays in assessment of neurodegenerative diseases 
as it is highly reproducible method [12]. Both white mat-
ter volume and grey matter volume were affected early 
in the disease course, regardless of their phenotype [10, 
11]. Nevertheless, grey matter damage may occur before 
white matter atrophy and can be perceived independently 
of the white matter lesions [12, 13].

Our objective was to evaluate the efficacy of DTI and 
voxel-based brain morphometry in the differentiation 
between adult MS and its MRI mimics.

Methods
Study design and populations
This case–control study was performed prospectively as 
one institution study on patients referred to the Diag-
nostic Radiology department from the neurology and 
psychiatry department of our hospitals. The study was 
conducted from May 2019 to November 2021 and was 

approved by our institutional Ethical Review Board. 
Informed written consent was obtained from all the study 
subjects. The study was approved by the clinical trials.gov 
protocol and registration and results system numbered 
ID: NCT03608605.

Patients from 18 to 50  years old with neurological 
manifestations suspicious for MS were included in the 
study. Age below 18 (pediatric age group) and above 
50 years (to avoid age-related white matter changes) was 
from the study exclusion criteria. Patients with an estab-
lished diagnosis of MS prior to study conduction were 
not included in the study. Patients with any absolute or 
relative contraindications to MRI were also excluded. The 
clinical history as well as the findings of the neurologi-
cal examination and the results of the relevant investiga-
tions was obtained for each patient. According to their 
final clinical diagnosis, the patients were divided into 
two groups: MS and MS mimics. If the patient met the 
MC Donald’s criteria 2017 [14], he or she was clinically 
diagnosed with MS; otherwise, they were classified as MS 
mimics. Fifteen healthy people of matched sex and age 
enrolled in the study as the control group  (Fig.  1). The 
healthy control did not have any neurological or psychi-
atric disease.

MRI protocol
All patients and healthy controls underwent MRI using 
a 1.5-T unit (Siemens, Magnetom Sempra, German) 
using an eight-channel receive-only head coil. Three-
dimensional (3D) fluid inversion recovery (FLAIR) 
with repetition time (TR) 8000  ms, echo time (TE) 
86  ms, slice thickness 4.5  mm, the field of view (FOV) 
230 × 230 mm2),3D high-resolution magnetization pre-
pared rapid gradient echo (MPRAGE) T1-weighted 
image (TR = 220 ms, TE = 2.83 ms, slice thickness 1 mm, 
FOV 250 × 250 mm2) and axial T2 weighted fast spin 
echo sequence (TR = 391  ms, TE = 120  ms, slice thick-
ness 4.5  mm, FOV 230 × 230 mm2) were included in 
the protocol. In addition, diffusion tensor images were 
obtained as axial diffusion-weighted data using a twice-
refocused single-shot echo-planar imaging sequence, 
with 20 diffusion-weighted directions equally spaced 
over a hemisphere at b0 and b1000 in a scan time of 
5 min 28 s (55 × 2.5 mm slices acquired interleaved, FOV 
230 × 230mm2, TR/TE = 3500/105 ms).

Image post‑processing
Image analysis was performed blinded to the patient’s 
final diagnosis by two experienced radiologists (20 and 
10  year experience in neuroradiology). All MRI images 
were transferred to the post-processing Siemens work-
station, imaging software platform (Syngo via, Siemens 
Medical Solutions, Erlangen, Germany) for visualization, 
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analysis, and post-processing. All images were corrected 
for motion and eddy current geometric distortions and 
non-brain tissues were removed. The DTI indices (frac-
tional anisotropy [FA], mean diffusivity [MD], and rela-
tive anisotropy [RA]) values were measured in different 
slices of B0 and color-coded maps on the axial images 
(Fig.  2). The DTI images were co-registered automati-
cally with anatomical images (FLAIR and T1WI). In each 
patient, a single region of interest (ROI) was drawn by 
both radiologists in the same session on the largest lesion 
along the corticospinal tract of high signal intensity in 
FLAIR images (Fig. 2) and isointense signal in T1WI. The 
ROI size was kept constant (3–4 mm2) in all patients to 
obtain the same number of voxels and decrease the varia-
tion in the DTI parameters and minimize partial volume 
effects [15]. DTI indices of the MS group were compared 
to those of the mimics group.

For the control group, The ROI was placed at the corti-
cospinal tract in healthy subjects and had the same size. 
The same processing and DTI indices were calculated. 
DTI parameters of the patients and the healthy controls 
were also compared.

Then, an automated MRI brain volumetry online sys-
tem (https://​volbr​ain.​upv.​es) using compressed 3D-T1WI 
and 3D FLAIR sequence in Neuroimaging Informatics 
Technology Initiative (NIfTI) format (converted using 
MRIcron program) was done for all patients in this study 
and uploaded to volbrain online system to calculate 
intracranial brain volume including grey matter “GMV”, 
white matter “WMV” and cerebrospinal fluid volume 
“CSFV”. All the volumes were presented in absolute value 
(measured in cm3) and in relative value (measured con-
cerning the intracranial volume). The online system also 
calculated volumes of different subcortical structures 

Fig. 1  a ROC curve for the prediction of MS via RA, FA, and MD in comparison to control. b ROC curve for the prediction of mimics via RA, FA, 
and MD in comparison to control. c ROC curve for the prediction of MS via RA, FA, and MD in comparison to mimics

https://volbrain.upv.es
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(Figs.  3e, 4e). Labeled colored graphical maps of the 
above-mentioned anatomical structures were also pro-
vided for each case (Figs. 3d, 4d). A statistical compari-
son between the relative value of GMV, WMV, and CSFV 
in the two studied groups and the healthy control group 
was done.

Statistical analysis
All statistical calculations were performed using the com-
puter program SPSS ((IBM-SPSS) version 26.0 software) 
for Microsoft Windows. Data were statistically described 
in terms of mean ± standard deviation (± SD), median and 
range, or frequencies (number of cases) and percentages 
when appropriate. Comparison of numerical variables 
between the study groups was done using the Student 
t-test for independent samples. For comparing categori-
cal data, the Chi-square test was performed.

The independent t-test was used to compare the FA, 
MD, and RA values in the patients and controls. Analysis 

of variance (ANOVA) test and paired t-test were per-
formed to compare the FA, MD, and RA values of the 
three groups.

Receiver operating characteristic (ROC curve) was gen-
erated using MedCalc Statistical Software version 18.11.3 
(MedCalc Software bvba, Ostend, Belgium; https://​www.​
medca​lc.​org; 2018) for the studied diagnostic markers, to 
determine the efficacies (sensitivity, specificity, and area 
under the curve (AUC)) of these different parameters. 
The Youden index was employed to identify the optimal 
cut-off value. The probability of significance (P value): P 
value < 0.05 was considered significant.

Results
Out of 58 patients (49 women and 9 men; mean age 
35.74 ± 11.86  years, range 18–50  years), thirty-one 
(53.4%) patients with mean age 33.97 ± 10.75 were diag-
nosed as MS while the remaining 27 (46.6%) patients 
were diagnosed as MS mimics with a mean age 

Fig. 2  A 31-year-old female with a clinical suspicion of MS. a Sagittal FLAIR image shows multiple deep white matter hyperintense lesions 
at the right frontal and parietal lobes (arrows). b Axial MD map shows hyperintense lesion at the right posterior parietal region (red ROI). c Axial 
FA map with 3mm2 ROI drawn on the same lesion (red ROI). d Quantitative map for the same lesion. The FA was 0.176, and the RA was 0.146. MD 
was denoted by ADC 1.313 × 10−3 mm2/s. The patient was diagnosed as MS

https://www.medcalc.org
https://www.medcalc.org
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37.78 ± 12.92 (p = 0.226). The distribution of patients with 
MS mimics is shown in (Table 1).

One-way ANOVA test showed a high statistically sig-
nificant difference between all DTI parameters of the MS 
patients and those of the control group. Moreover, the 
MD values were significantly different between all groups 
where the MS group demonstrated the highest mean 
value (Table 2).

ROC curve analysis was done for the DTI parameters 
(RA, FA, and MD) to assess their diagnostic ability in the 
differentiation between the different groups of the study. 
Multiple ROC curves were performed for the discrimina-
tion of MS and controls (Table 3; Fig. 1a), MS mimics and 

controls (Table 4; Fig. 1b), and finally for the discrimina-
tion of MS and mimics patients (Table 5; Fig. 1c), which 
show lower sensitivity with nearly the same specificity 
and high statistically significant difference.

The maximal AUC value for the differentiation between 
MS and MS mimics (Table  5) is 0.502 for FA identi-
fied via the Youden Index with a specificity of 37% and 
a sensitivity of 96.8%. Regarding the same concern, MD 
showed a statistically significant AUC value of 0.845, with 
a cut-off point of > 1.058 × 10−3mm2/s according to the 
Youden Index with a specificity of 87.1% and a sensitiv-
ity of 77.8%, p value < 0.001. All other metrics (RA, FA) 
showed no significant difference.

Fig. 3  A 28-year-old female with clinically suspected MS. a axial FLAIR image shows bilateral multiple deep white matter hyperintense lesions 
in the frontal and parietal lobes (arrows). b FA map with ROI placed on the right frontal corticospinal lesion (arrow). c Corresponding MD map shows 
a right frontal lesion (arrow). d Volumetric report representing automated colored graphical maps of the different intracranial structures in axial, 
coronal and sagittal planes. e Volumetry brain report for estimated brain structures volumes revealed that WMV was 36.95%, GMV was 51.80%, 
and CSFV was 11.60%. The diagnosis was MS
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Moreover, there was a significant difference between 
white matter volume and CSFV in both groups 
(Table 6).

Testing of the deep grey matter volume changes 
(including the thalamus, caudate, putamen, and hip-
pocampus) between MS and MS mimics group show 
that there is the significant statistical difference for 
the thalamic volume between MS and MS mimics with 
p = 0.028 (Table 7).

Discussion
Conventional MRI sequences are largely nonspecific, and 
only provide a limited view of the complex morphological 
changes associated with MS. Diffusion-weighted imaging 
(DWI), tractography, and volumetry are advanced tech-
niques having a complementary roles to that of conven-
tional sequences by revealing more-specific information 
on microstructural tissue changes which can be used also 
to differentiate MS from other pathologies [4].

Fig. 4  A 45-year-old female presented with headache and numbness in the face. a Sagittal FLAIR image showing left frontal deep white matter 
hyperintense lesion (arrow). b Color-coded map with left frontal lesion causing fiber disruption (arrow). c Corresponding FA map of the detected 
lesion. d Volumetry report representing quantitative assessment of intracranial structures in different planes. e Volumetry brain report showing 
WMV was 31.35%, GMV was 51.68%, and CSFV was16.97%.The patient was diagnosed as cerebral small vessel disease
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The current study evaluated different white matter 
lesions using combined conventional and advanced MRI 
sequences in 58 patients having symptoms suspected by 
the physician to be MS. Then, the patients were classified 
as MS and MS mimics after completing their investiga-
tions. The results of the MRI were compared to those of 
15 healthy control subjects.

The current understanding is that the RA is derived 
from a ratio between the anisotropic portion of the 
diffusion tensor and the isotopic portion and it asso-
ciate with myelin integrity. Decreased FA has been inter-
preted to report a decrease in axonal density, whereas 
the increased MD is associated with axonal and myelin 
loss [5]. By demonstrating increased MD and decreased 
FA in MS lesions in comparison to mimics and controls, 
our results are in agreement with the study conducted 
by Kato et al. [16] who found that the ROI analysis of FA 
showed decreased values in diseases that cause neurode-
generation, including MS. In accordance with our study, 
they also concluded that the MS group had significantly 

Table 1  Studied patients divided into two subgroups according 
to their diagnosis

MS multiple sclerosis, N numbers, NMOSD neuromyelitis optica spectrum 
disorder

Variables N = 58 %

Diagnosis

 MS group 31 53.4

 MS mimics group 27 46.6

Types of mimics N = 27

 Small vessels disease (SVD) 15 55.6

 Vasculitis 5 18.5

 NMOSD 3 11.1

 Optic neuritis 2 7.4

 Neuro Becht disease 1 3.7

 Antiphospholipid syndrome 1 3.7

Table 2  Comparison of RA, FA, and MD between controls, MS, and mimics groups

Bold values indicate high statistical significant results

MD is presented in units of 10−3 mm2/s

One-way ANOVA was used to compare the mean difference between control, MS, and mimics patients

Data were expressed mean ± SD

RA relative anisotropy, FA fractional anisotropy, MD mean diffusivity

P1 value: control versus MS

P2 value: control versus mimics

P3 value: MS versus mimics

Variables Controls (n = 15) MS (n = 31) Mimics (n = 27) P1 value P2 value P3 value

RA 0.312 ± 0.088 0.191.86 ± 0.045 0.207 ± 0.114  < 0.001 0.001 1.000

FA 0.354 ± 0.095 0.226.35 ± 0.050 0.239 ± 0.126  < 0.001 0.001 1.000

MD 0.695 ± 0.068 1.231 ± 0.164 0.981 ± 0.222  < 0.001  < 0.001  < 0.001

Table 3  Diagnostic ability of RA, FA, and MD in the prediction of 
MS in comparison to control

Bold values indicate high statistical significant results

PPV positive predictive value, NPV negative predictive value, AUC​ area under the 
curve, RA relative anisotropy, FA fractional anisotropy, MD mean diffusivity
* MD is presented in units of 10−3 mm2/s

Indices Diagnostic criteria

RA FA MD

AUC​ 0.899 0.888 1.00

Cut off  ≤ 0.281  ≤ 0.331  > 0.806*

Accuracy 86.0% 82.0% 100.0%

Sensitivity, % 100.0% 100.0% 100.0%

Specificity, % 71.4% 64.3% 100.0%

PPV, % 88.6% 86.1% 100.0%

NPP, % 100.0% 100.0% 100.0%

P value  < 0.001  < 0.001  < 0.001

Table 4  Diagnostic ability of RA, FA, and MD in the prediction of 
mimics in comparison to control

Bold values indicate high statistical significant

PPV positive predictive value, NPV negative predictive value, AUC​ area under the 
curve, RA relative anisotropy, FA fractional anisotropy, MD mean diffusivity
* MD is presented in units of 10−3 mm2/s

Indices Diagnostic criteria

RA FA MD

AUC​ 0.786 0.775 0.960

Cut off  ≤ 0.267  ≤ 0.315  > 0.764*

Accuracy 78.5% 75.0% 94.5%

Sensitivity, % 85.2% 85.2% 96.3%

Specificity, % 71.4% 64.3% 92.9%

PPV, % 85.2% 82.1% 96.3%

NPP, % 71.4% 69.2% 92.9%

P value  < 0.001  < 0.001  < 0.001
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higher AD, MD, and RD in WM lesions than the NMOSD 
group and that all DTI indices (except FA) differed signif-
icantly between the relapsing remitting MS and NMOSD 
groups. Similar results were reported by El-Sourgy et al. 
[9] who found a statistically significant reduction of FA 
(Fiber directionality/axonal loss) and an increase of MD 
(amount of water diffusion/myelin loss) in all MS patients 
compared to the healthy control.

As regard MS mimics patients, especially those diag-
nosed with cerebrovascular small vessel disease, Caunca 
et  al. [17] reported that greater WMH in vascular dis-
ease is associated with lower FA suggesting white matter 
integrity loss.

Our study hypothesized that quantitative DTI param-
eters may aid in differentiation between MS and its mim-
ics, and to our knowledge, this is the first study to provide 
cut-off values by comparing DTI parameters between MS 
patients and MS mimics. The present results showed that 
the MD values of MS lesions were significantly higher 
than those of their mimics with a high sensitivity (87.1%) 
and a cut-off value > 1.058 × 10−3  mm2/s for differentiat-
ing both groups with AUC of about 0.845. The cut-off 
value for RA and FA shows no significant results. This 
implies that the measurement of MD in suspicious brain 
lesions can add significance in differentiating MS from its 
mimics at the time of diagnosis.

In the present study, a comparison of GMV, WMV, 
and CSFV between the MS group and the mimics 
group, revealed significantly higher WMV with signifi-
cantly lower CSFV in MS patients (p value = 0.047 and 
0.012; respectively). When interpreting these measures, 
it should be noted that brain atrophy is not specific to 
the pathological events underlying it, additionally, in 
the early stage of the disease, atrophy may not be easily 
detectable, but neuroaxonal loss has already started [13].

In our study, volumetric assessment of bilateral thala-
mus, caudate, putamen, and hippocampus were automat-
ically calculated and compared between MS and mimics 
patients. We found a significantly lower thalamic volume 
in MS patients (p-value 0.028) with no significant differ-
ence between both groups regarding putamen, caudate, 
and hippocampal volumes (p value = 0.331, 0.175, and 
0.241; respectively).

Solomon et al. [18] observed significant results in dif-
ferentiating thalamic volume proportion in relation to the 
intracranial volume between MS and non-MS groups. 
Those data suggest that the thalamocortical tract disrup-
tion by any white matter disorders other than MS is not 
associated with the same degree of thalamic volume loss 
seen in MS patients. The pathologic processes in SVD 
occurring at the site of white matter lesions are distinct 
from MS, and these processes, as well as direct thalamic 
injury in MS, may be responsible for the volumetric dif-
ferences we observed [19].

Early cross-sectional studies [11, 20] conducted on 
patients with MS indicated that both white matter and 
grey matter loss occurred early in the disease course, 
regardless of disease phenotype. Other studies concluded 
that grey matter damage start before white matter atro-
phy and can take place independently of white matter 
lesions [13, 21]. Moreover, two preceding studies; one 

Table 5  Diagnostic ability of RA, FA, and MD in the prediction of 
MS in comparison to mimics

Bold font indicates high statistical significance

PPV positive predictive value, NPV negative predictive value, AUC​ area under the 
curve, RA relative anisotropy, FA fractional anisotropy, MD mean diffusivity, MS 
multiple sclerosis
* MD is presented in units of 10−3 mm2/s

Indices Diagnostic criteria

RA FA MD

AUC​ 0.501 0.502 0.845

Cut off  ≤ 0.232  > 0.154  > 1.058*

Accuracy 61.0% 67.0% 82.5%

Sensitivity, % 80.7% 96.8% 87.1%

Specificity, % 40.7% 37.0% 77.8%

PPV, % 61.0% 63.8% 81.8%

NPP, % 64.7% 90.9% 84.0%

P value 0.994 0.978  < 0.001

Table 6  Comparison of volume parameters between MS and 
mimics patients

Bold font indicate statistical significant result

Data were expressed mean ± SD

Variables MS (n = 31) Mimics (n = 27) P value

White matter volume (%) 33.31 ± 4.40 35.71 ± 4.58 0.047
Grey matter volume (%) 50.46 ± 3.78 51.14 ± 5.04 0.558

Cerebrospinal fluid volume (%) 16.38 ± 5.93 13.06 ± 3.09 0.012

Table 7  Comparison of thalamic volume, putamen, and 
hippocampus between MS and mimics patients

Bold font indicates statistical significant result

Data were expressed as mean ± SD. All volumes are presented in cm3. MS 
multiple sclerosis, n numbers

An Independent sample T-test was used to compare the mean difference 
between groups

Variables MS (n = 31) Mimics (n = 27) P value

Thalamic volume 8.40 ± 2.25 9.59 ± 1.60 0.028
Putamen 7.12 ± 1.50 7.47 ± 1.16 0.331

Caudate 6.26 ± 1.65 6.75 ± 0.89 0.175

Hippocampus 6.53 ± 1.35 6.94 ± 1.27 0.241
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based on the estimation of cortical thickness [22], and 
the other was a meta-analysis of voxel-based morpho-
metry [23]; revealed statistically significant associations 
between the endpoints of disability and the degree of 
grey matter atrophy. In their recent study Eshaghi et  al. 
[24] reported that gray matter atrophy occurs bilater-
ally and predominantly affects the cingulate, pre-central, 
and/or post-central gyri, the thalami, and basal ganglia.

Limitations
There are some limitations affect the interpretation of 
the results of the current work. First, the small patient 
cohort for each group analysis might influence the sta-
tistical power of our findings. Second, the comparison 
between MS mimics including variable diseases might 
affect the results. Third, the use of multiple lesions 
assessment in each case in quantitative measures of DTI 
parameters may provide better results than a single lesion 
assessment. Lastly, ROI method for analysis is operator 
dependent, and could subject to partial volume artifacts 
so we used only lesions with a diameter greater than 
5 mm that underwent analysis.

Conclusions
In conjunction with good clinical, neurological, and lab-
oratory assessment MRI plays an important role in the 
diagnosis of MS and ruling out of mimics. Advanced MRI 
sequences add more sensitivity and specificity in con-
firming or excluding the diagnosis of MS. Quantitative 
DTI measurements, particularly MD can discriminate 
MS from its mimics with good accuracy. Voxel-based 
brain morphometry may add value to the differentiation 
of MS from its mimics.
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