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Abstract 

Background  Lung cancer is a fatal disease which has high occurrence and mortality rates, worldwide. Computed 
tomography imaging is being widely used by clinicians for detection of lung cancer. Radiomics extracted from medi-
cal images together with machine learning platform has enabled automated lung cancer diagnosis. Therefore, this 
study is proposed with the aim to efficiently apply radiomics and ML techniques to classify pulmonary nodules in CT 
images. Lung Image Data Consortium is utilized which contains 1018 CT lung cancer cases.

Results  Radiomics are extracted using Shape, Gray Level Co-occurrence Method, Gray Level Difference Method, 
and Gray Level Run Length Matrix along with Wavelet Packet Transform. To select a relevant set of features two 
techniques, Analysis of variance and Chi-square test, are applied. The classification of nodule into benign or malignant 
is evaluated by using state-of-art models: Support vector machine, Decision Trees, Ensemble Trees (BOCET, BACET, 
RUSBOCET), Ensemble Subspace KNN and Ensemble Subspace Discriminant. The results show that, BACET gives best 
AUROC (92.9%), MGSVM gives best accuracy (90.4%), FGSVM yields the best sensitivity (97.8%), MGSVM gives best 
precision (94.1%) and RUSBOCET gives best specificity (84%).

Conclusions  The results show that the proposed methodology can be successfully used for the classification 
of pulmonary nodules based on CT images. The outcome thus can help clinicians to reach better decision, treatments 
and early diagnosis.
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Background
Lung cancer (LC) is a dreaded disease impacting both 
male and female populations worldwide. It has occu-
pied the second most places among all the types of 
cancers, having 2.21 million cases and the rate is gradu-
ally increasing. Many factors including smoking, drug 
intake, and inhalation of harmful substances produced 

by industries and vehicles are the main cause of LC [1]. 
The major impact of LC is seen in people with age over 
70  years while a small number of people detected with 
this disease age less than 45 [2]. In a report provided by 
World Health Organization (WHO) [3], about 1.80 mil-
lion deaths are caused just because of LC. A report on 
USA statistics in 2020 revealed that 197,453 new lung 
cancers were reported and 136,084 people died from LC. 
In the UK, every year, approximately, 44,500 cases are 
diagnosed with LC [4].

For early detection of LC, pulmonary nodules are pri-
marily focused as they provide a direct picture of cancer 
spread. A lung nodule comprises a round lesion having a 
diameter of ≥ 3 cm. It can be benign which is non-can-
cerous or malignant which is cancerous [2]. Mortality 
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increases dramatically with the presence of malignant 
lung nodules, whereas the patient’s survival rate increases 
if the nodules are benign. Hence, early and accurate 
diagnosis of LC requires proper differentiation between 
benign and malignant nodules [5].

One of the crucial hurdles in the detection of LC is 
that it does not show any symptoms in the early stages. 
Many of the cases come into knowledge or are discovered 
by doctors when LC reaches its advanced stage and cur-
ing the disease becomes very difficult at that time. Sev-
eral clinical techniques are available to detect LC, such 
as radiology and blood tests, endoscopy, biopsies, X-ray 
imaging. Among these, the computed tomography (CT) 
technique is a highly adopted modality used for LC diag-
nosis as it provides fast results without any pain and pro-
vides in-depth details about tumor location, size, shape, 
etc. [4]. However, these clinical measures are effective but 
perform only subjective analysis and have a high risk of 
occurrence of human error due to manual evaluation by 
radiologists [6].

The conversion of digital medical images into mine-
able high-dimensional data, a process that is known as 
radiomics, is motivated by the concept that biomedi-
cal images contain information that reflects underly-
ing pathophysiology and that these relationships can 
be revealed via quantitative image analyses. Radiomics 
is designed to be used in decision support of precision 
medicine [7]. Radiomics is a quantitative approach that 
applies data-characterization algorithms whose purpose 
is to improve the already available data using math-
ematical analysis [5]. Radiomics and advanced learning 
approaches can be used in combination to perform an 
accurate diagnosis of LC. The introduction of machine 
learning (ML) in healthcare has changed the face of dis-
ease diagnosis. ML algorithms have the greater capability 
to deal with different types of data and produce classifica-
tion output with high accuracy. Noor Khehrah et al. [6] 
proposed using statistical and shape-based features and 
SVM for LC detection. They achieved excellent results 
with sensitivity of 93.75%. In another study, Parmatasari 
et al. [8] applied SVM to classify lung cancer and yielded 
an accuracy of 85.63%.

In radiomics, features from 2D Region of Inter-
ests (ROI’s) and/or 3D Voxels of Interests (VOI’s) are 
extracted. The proposed study aims to evaluate the pro-
ficiency 2D CT radiomics, shape and ML approaches for 
the diagnosis of cancer in lung nodules. The approach 
employs selection of most suitable features for classifica-
tion. Various state-of-art classifiers, in addition to SVM, 
are evaluated using metrics to find the best outcome/
model. The proposed framework is useful and reliable in 
the successful classification of the lung nodule as benign 
or malignant.

Existing literature
Donga et al. [3] investigated modified gradient boosting 
ML to classify pulmonary nodules in CT images. They 
preprocess CT images, segment nodule borders, extract 
intensity and texture data, and train/test the modi-
fied gradient boost classifier to discriminate between 
benign and malignant nodules. The suggested framework 
achieves good precision, recall, F1 score, and validation 
accuracy on the LIDC-IDRI dataset (0.957%, 0.91, 0.941, 
and 95.67%). Comparative research shows the suggested 
technique classifies benign or malignant lung nodules 
better. Alzubaidi et al. [4] developed a comprehensive and 
comparative methodology for lung cancer diagnosis uti-
lizing CT scan images, covering global and local aspects. 
Thousand CT scans were preprocessed by warping and 
cropping. Global and local features’ training and testing 
make up the framework. Global features from ten image 
feature categories are extracted to provide feature vec-
tors for six machine learning algorithm detection mod-
els. Gabor Filter, Haar Wavelet feature and Histogram 
of Oriented Gradients (HOG) outperform others, while 
support vector machine (SVM) outperforms learning 
techniques. SVM with Haar Wavelet, HOG, and Gabor 
Filter features achieves 90% accuracy, 88% sensitivity, 
and 97% specificity, outperforming global approaches. 
Radiomics was used in cancer diagnosis, prognosis, and 
therapy response prediction by Chen et  al. [5]. A 4-fea-
ture signature was used to classify lung nodules using 
radiomics and CT images. In 72 individuals with 75 pul-
monary nodules, benign and malignant lesions differed 
in 76 of 750 imaging characteristics. The radiomics sig-
nature classified benign or malignant nodules with 84% 
accuracy, 92.85% sensitivity, and 72.73% specificity. The 
study found that radiomics can enhance lung nodule cat-
egorization non-invasively. Khehrah et  al. [6] automates 
lung nodule identification using CT scans. Statistical 
and shape-based characteristics from nodule candidates 
produce feature vectors categorized by support vector 
machines. The method’s 93.75% sensitivity on a large lung 
CT dataset (LIDC) outperforms comparable approaches. 
The framework improved lung nodule identification and 
diagnosis. SVM classification using GLCM and RLM 
features is used to identify lung cancer by Permatasari 
et al. [8]. The study classifies 500 Cancer Imaging Archive 
Database CT pictures into normal and LC clusters. The 
study investigated image preprocessing, region of interest 
(ROI) segmentation, and feature extraction. SVM classifi-
cation accuracy obtained is 85.63%.

Shakir et  al. [9] developed radiomics-driven models 
to classify lung, colon, and neck and head cancer using 
CT images. Analytical radiomics signatures from lung 
nodules were extracted and derived from 105 3-D fea-
tures. These signatures were incorporated into regression 
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model for tumor classification. Validation on public data-
set of 265 images demonstrated high classification rates, 
indicating the robustness of the models. The study sug-
gested the successful development of diagnostic math-
ematical functions for cancer diagnosis based on general 
tumor phenotype. Palumbo et  al. [10] evaluated role of 
shape and texture features from 18F-FDG PET/CT to 
classify between benign and malignant lung nodule. 18 
3D features from PET and CT were used in prediction 
models. The outcomes of the models clearly show that an 
added accuracy gain is acquired when a combination of 
PET and CT features are used. Belfiore et al. [11] exam-
ined Non-Small Cell Lung Cancer (NSCLC) CT scan 
radiomics characteristics’ resilience with respect to three 
segmentation approaches. Expert radiologists segmented 
three 3D-ROIs to analyze radiomics characteristics in 48 
NSCLC patients. The intra-class correlation coefficient 
(ICC) among features was evaluated. Shape characteris-
tics demonstrated good agreement (ICC > 0.9) and little 
parameter sensitivity. A subset of ’first-order’ and ’sec-
ond-order’ characteristics showed good agreement. The 
study found that certain radiomics properties can sig-
nificantly improve NSCLC CT scan reproducibility. Pad-
makumari et  al. [12] tested CT radiomics for its ability 
to discriminate lung cancer (LC) from tuberculosis (TB) 
in low-income nations without lung biopsies. Radiomics 
were derived from 3D segmented CT images of histo-
logically proven TB or LC patients’ chests. Clinical and 
radiomics differences between LC and TB were signifi-
cant. The study showed that the radiomics may enhance 
resource-limited oncological patient treatment by identi-
fying these illnesses non-invasively. However, prospective 
studies are needed to confirm these findings. The study 
in [13] developed a radiomics nomogram using wavelet 
characteristics to differentiate between malignant and 
benign early-stage lung nodules for high-risk screen-
ing purposes. Training set (N = 70) and validation set 
(N = 46) of 116 patients were considered with early-stage 
solitary pulmonary nodules (SPNs) of size 3 cm. Standard 
CT pictures were used to extract each patient’s radiomics 
characteristics. Using a multivariate logistic regression 
model, the researchers generated a radiomics nomogram 
with an area under the curve (AUC) of 0.9406, accuracy 
of 95% and confidence interval (CI) of (0.8831–0.9982) in 
the training set and an AUC of 0.8454, accuracy of 95% 
CI 0.7196–0.9712) in the validation set.

Torres et al. [14] experimented with hybrid approach 
of using feedforward networks and nodule radiom-
ics from CT. They suggested incorporating statistically 
important radiomic features for malignancy detection 
to improve repeatability with limited training data. The 
best model identified malignancies with 100% sensitiv-
ity and 83% specificity (AUC = 0.94) in an independent 

patient population. In another study, Balci et  al. [15], 
proposed a new hybrid method that performs classi-
fications using both medical image analysis and radial 
scanning series features. According to the results, an 
accuracy of 92.84%, recall of 92.41 and precision of 
92.63 was obtained.

From the above studies and many more it is a deep-
rooted fact that not all the extracted features are equally 
good predictors for classification of lung nodules. Hence 
it is interesting and important to pick out the most dis-
criminative feature and/or a subset of such features from 
a pool of extracted features. In this study, an attempt is 
made to investigate and analyze the discriminative power 
of various shape features and statistical texture features. 
The texture features are proposed to be extracted before 
and after applying WPT. Most significant and discrimi-
native features out of an extensive pool of 7455 extracted 
features are selected using feature selection methods. 
State-of-art classification techniques will hence be 
applied to the selected features to evaluate the perfor-
mance of each diagnostic model.

The rest of the paper proceeds as follows: Materials 
and methods are presented in section  "Methods". The 
experimental results and analysis are reported in sec-
tion "Results". Section "Discussion" presents the conclu-
sion and future work.

Methods
This research work is proposed to execute the classifica-
tion of lung nodules in CT images as benign or malignant 
by investigating the proficiency of shape and 2D radiom-
ics, feature selection methods and ML algorithms. The 
whole study framework comprises of different stages, viz. 
dataset collection, feature-extraction, feature selection, 
classification, and performance assessment of various 
classifiers.

Dataset
A dataset plays a vital role in any diagnostic system. In 
this work, CT images from Lung Image Data Consortium 
(LIDC) is utilized which contains 1018 CT lung cancer 
patient scans. This LIDC database has CT images along 
with four experienced radiologists’ ground truth reports. 
The presence of malignancy in nodules ≥ 3 mm and the 
annotations accorded by radiologists are described in 
detail in [16–18]. The slice count in each scan, used in 
this study, varied in the range of 110–388. A total of 1207 
slices of CT scans were considered; 883 malignant and 
324 benign. Samples from the LIDC dataset with malig-
nant ROI’s are shown in Fig. 1. The framework of the pro-
posed methodology is shown in Fig. 2.
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Fig. 1  LIDC dataset sample images with a malignant ROI’s

Fig. 2  Proposed framework to classify lung nodule as malignant or benign
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Feature extraction
For feature extraction the above dataset was put to use. 
Shape features and radiomics (texture, wavelet) are 
extracted using statistical techniques. A synopsis of these 
features is as follows:

Shape features
Different shape features play a vital role in the classifica-
tion process. These features are crucial as they are closely 
associated with the detection and prognosis of cancer 
[19]. Seven such features are extracted, namely Area, 
Perimeter, Major-axis-Length, Minor-axis-Length, Max-
Intensity, Mean-Intensity, and Min-Intensity. The list of 
these features is also given in Table 1.

Texture features
Texture analysis is a way of describing the spatial dis-
tribution of intensities [20] hence enabling description 
of tissue heterogeneity, a property believed to influence 
the outcome of cancer treatment [21]. In this work, to 
analyze Haralick’s texture features, three techniques, i.e. 
Gray Level Co-occurrence Method (GLCM), Gray Level 
Difference Method (GLDM), and Gray Level Run Length 
Matrix (GLRLM) [6, 9, 10, 22, 23], for some value of inter 
pixel distance ‘d’ and angle ‘θ’, are adopted to extract 
second and high-order statistics. Using GLCM twenty-
two texture features are computed, viz. Autocorrelation 
(ACOR), Contrast (CON), Correlation1 (COR1), Corre-
lation2 (COR2), Cluster Prominence (CP), Cluster Shade 
(CS), Dissimilarity (DS), Energy (ENR), Entropy(ENT), 
Homogeneity1(HMG1), Homogeneity2 (HMG2), Maxi-
mum Probability (MP), Sum of Squares: Variance (SOS), 
Sum Average (SA), Sum Variance (SV), Sum Entropy 
(SENT), Difference Variance (DV), Difference Entropy 
(DENT), Information Measure of Correlation1 (IMC1), 
Information Measure of Correlation2 (IMC2), Inverse 
Difference Moment (IDM), Inverse Difference Moment 
Normalized (IDMN).

Five texture features; Contrast (CON), Angular Second 
Moment (ASM), Entropy (ENT), Mean (M), Inverse Dif-
ference Moment (IDM) are computed from GLDM.

Also, using GLRLM eleven features are computed 
namely Short Run Emphasis (SRE), Long Run Emphasis 
(LRE), Gray Level Non-uniformity (GLN), Run Length 
Non-uniformity (RLN), Run Percentage (RP), Low Gray-
Level Run Emphasis (LGRE), High Gray-Level Run 
Emphasis (HGRE), Short Run Low Gray-Level Empha-
sis (SGLGE), Short Run High Gray-Level Emphasis 
(SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), 
Long Run High Gray-Level Emphasis (LRHGE). Refer 
Table 1.

WPT texture features
2-level Wavelet Packet Transform (WPT) [24, 25] is used 
to generate multi-scale representations of the original 
image. While there are number of well performing wave-
lets available, the choice of the wavelet used depends on 
the application. This study focused on orthogonal wave-
lets of compact support, introduced by Daubechies [26]. 
The Daubechies wavelets can have appreciable influence 
into the success of texture classification because the fil-
ter affects positively the quality of the descriptors [2, 
27]. Daubechies wavelet family db1, db2, and db3 were 
applied to implicate WPT. Given an image, 2-level WPT 
generates 16 multi-scaled images. Above set of features 
are computed, using same three Haralick’s texture tech-
niques, on wavelet multi-scaled images. Accordingly, 
these classes are denoted as WPT-GLCM, WPT-GLDM 
and WPT-GLRLM. The list of feature classes’ along with 
the no of features extracted in each class is provided 
in Table  2 and the list of features extracted is given in 
Table 1.

Feature selection
Feature selection (FS) aims to draw out only the most 
informative features and remove noisy, non-informa-
tive, irrelevant and redundant features so as to benefit 

Table 1  List of Shape and Texture Features extracted using GLCM, GLDM, and GLRLM [22]

GLCM Autocorrelation (ACOR), Contrast (CON), Correlation1 (COR1), Correlation2 (COR2), Cluster Prominence 
(CP), Cluster Shade (CS),Dissimilarity (DS), Energy (ENR), Entropy(ENT), Homogeneity1 (HMG1), Homo-
geneity2 (HMG2), Maximum Probability (MP), Sum of Squares: Variance(SOS), Sum Average (SA), Sum 
Variance (SV), Sum Entropy (SE), Difference Variance (DV), Difference Entropy (DE), Information Measure 
of Correlation1 (IMC1), Information Measure of Correlation2 (IMC2), Inverse Difference Moment(IDM), 
Inverse Difference Moment Normalized (IDMN)

GLDM Contrast (CON), Angular Second Moment (ASM), Entropy (ENT), Mean, Inverse Difference Moment (IDM)

GLRLM Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Non-uniformity (GLN), Run Length 
Non-uniformity (RLN), Run Percentage (RP), Low Gray-Level Run Emphasis (LGRE), High Gray-Level Run 
Emphasis (HGRE), Short Run Low Gray-Level Emphasis (SGLGE), Short Run High Gray-Level Emphasis 
(SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), Long Run High Gray-Level Emphasis (LRHGE)

Shape Features Area, Perimeter, MajorAxisLength, MinorAxisLength, Max_Intensity, Mean_Intensity,Min_Intensity
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ML models [28]. The FS methods that are routinely used 
are grouped into three methodological categories: Fil-
ter Type FS methods (FTFS), Wrapper Type FS meth-
ods and Embedded Type FS methods. In this work two 
FTFS methods were used, viz. Chi-square tests and the 
Analysis of variance (ANOVA). These methods use fea-
ture ranking as the evaluation metric and have proven 
significant to the detection of LC using radiomics and 
ML [29]. Chi-Square (χ2) tests are statistical tests used 
to determine if categorical variables are significantly 
associated. If the calculated χ2 value exceeds the criti-
cal value, it indicates a significant association between 
the feature and the target, suggesting that the feature 
is relevant for classification or prediction [30]. Features 
with a high χ2 value and a low p-value are selected for 
further analysis because they are deemed more perti-
nent to the task. Analysis of Variance (ANOVA) is also 
a statistical technique used to examine the differences 
between group means in a dataset [31]. Features that 
demonstrate significant variability between two catego-
ries are regarded essential for differentiating them and 
thus are selected for further analysis. Hence, features 
with higher F-statistic values are typically selected and 
retained for further analysis or model building.

Classification and performance evaluation
Classification
Once the discriminative radiomics are available, using 
FTFS algorithms, various state-of-art classifiers; sup-
port vector machine (SVM) [32–34], decision trees [35], 
ensemble trees [36, 37], and ensemble subspace [38, 39] 
may be used to classify the lung nodule into 2 classes 
(benign and malignant).

SVM
Research reveals that SVM has emerged as a popular 
and powerful approach of ML in the domain of medi-
cal image analysis because of its relative simplicity and 
flexibility in implementation [33]. SVM is able to han-
dle nonlinearly independent data by transforming the 
input features into a higher-dimensional space using a 
kernel function. Different types of kernel functions used 
are Linear, Polynomial, Radial Basis Function (RBF, also 
known as Gaussian) and sigmoid.

Decision trees
The decision tree algorithm in ML employs a tree struc-
ture for the classification process. With this approach, we 
decompose the dataset, root node, into nodes where each 

Table 2  List of features per class

Feature class No of the features extracted Total

Shape 7

GLCM Directions (θ) 00 22 88 152 7455

450 22

900 22

1350 22

GLDM 00 5 20

450 5

900 5

1350 5

GLRLM 00 11 44

450 11

900 11

1350 11

WPT-GLCM WPT family (Level = 2) db1 88*16 1408 4224

db2 88*16 1408

db3 88*16 1408

WPT-GLDM db1 20*16 320 960

db2 20*16 320

db3 20*16 320

WPT-GLRLM db1 44*16 704 2112

db2 44*16 704

db3 44*16 704
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internal node denotes the feature, branches denote the 
rules and the leaf nodes denote decision and categoriza-
tion. This method may be used with either numerical or 
qualitative information.

Ensemble tree
A tree ensemble is a ML technique for supervised learn-
ing that consists of a set of individually trained decision 
trees defined as base learners that may not perform well 
singly. The aggregation of the  base learners produce a 
new  strong  model, which is often more accurate than 
the former ones. The three types of ensemble learning 
methods, bagging, boosting  and RUSboosting are used. 
Bagging generates a set of bootstrapped versions of data 
(bags) from the original training dataset. Each bag con-
sists of N observations, drawn from the original dataset 
at random but with replacement. Thus, a bag consists of 
approx. 63% of distinct samples and the remaining ones 
are the duplicates [40]. A decision tree is then trained 
with each bag, and combined by majority voting. Boost-
ing is an ensemble modeling technique that attempts to 
build a strong classifier from the number of weak clas-
sifiers in series. A model is built from the training data. 
Then the second model is built which tries to correct the 
errors present in the first model. This procedure is con-
tinued and models are added until either the complete 
training data set is predicted correctly or the maximum 
number of models is added. RUSboost  is a boosting ML 
technique designed to improve the performance of mod-
els trained on skewed data. It applies random under-
sampling (RUS), a technique which randomly removes 
examples from the majority class until a desired class dis-
tribution is achieved.

Ensemble random subspace
The random subspace (RS) ensemble classifier achieves 
the benefits by applying a random subset of features over 
the combined set of base classifiers (KNN and Discrimi-
nant). Randomly selected subset features from the actual 
data set space are utilized to train the set of N number of 
base/weak classifiers. A majority voting combination rule 
is implemented over the output predictions of weak clas-
sifiers to obtain target class labels at final stage. K-Nearest 
Neighbor algorithm (KNN) is a nonparametric classifica-
tion technique. It is a type of instance-based learning. 
The input consists of the K closest training examples in 
the feature space and the output is a class membership. 
Classification is done by a majority vote of neighbors. If 
K = 1, then the class is single nearest neighbor [41]. LDA 
is a supervised learning algorithm that means it uses class 
labels and is suitable for class separation. It uses within-
class and between-class scatter matrices. If there are two 
classes, then the LDA draws one hyperplane and projects 

the data onto this hyperplane in such a way as to maxi-
mize the separation of the two categories. This hyper-
plane is created by maximizing the distance between 
the means of two classes and minimizing the variation 
between each category. It provides accepted accuracy 
and is widely used in medical-computer interfaces [42].

Performance evaluation
The confusion matrix obtained from prediction models 
is used to visualize their performance. The set of perfor-
mance evaluation metrics used in this work are Accuracy, 
Area under Curve (AUC), Sensitivity, Precision and Spec-
ificity. Accuracy is the ability of the model to compute 
accurate predictions to the total figure of predictions. 
Sensitivity, also known as Recall, is used to compute the 
number of true positives (tp). Precision refers to the abil-
ity of the model to predict the quality of positive predic-
tion and Specificity refers to the ability of the model in 
predicting true negatives (tn). For all these metrics, a 
value close to 1 indicates a good classification result and 
vice-versa. The Receiver Operating Curve (ROC) tells 
how well a model performs. The mathematical equations 
used to calculate the evaluation metrics are provided as 
under:

Here, tp, tn, fp, and fn denote true-positive, true-nega-
tive, false-positive, and false-negative.

Results
The implementation of the proposed strategy was per-
formed using MATLAB 2017a and 2021b. A 64-bit 
computer system with 16 GB RAM was utilized for the 
purpose. The experimentation of this study is done on 
the LIDC dataset. A total of 1207 slices of CT scans were 
considered; 883 malignant and 324 benign.

Using the annotations of the radiologists, ROI of nod-
ules for all slices were obtained. Shape features (sec-
tion  "Shape features") of all nodules are extracted. 
Further, a sub-image of 11 × 11 pixels is selected around 
the centroid of each nodule and all 152 Haralick’s tex-
ture features (section  "Texture features") are computed. 
The GLCM, GLDM and GLRLM matrices are formu-
lated using all four spatial directions at θ = 0°, 45°, 90°, 
135° keeping inter pixel distance ‘d’ = 1 which can have 

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

Recall =
tp

tp+ fn

Precision =
tp

tp+ fp

Specificity =
tn

tn+ fp
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far reaching implications. Moreover, for each sub-image 
WPT is applied upto level-2 which yielded 16 multi-
scaled minuscule-images. Daubechies wavelet family 
db1, db2, and db3 were used as the basis functions and 
the WPT texture features (section 3.2.3) were evaluated 
in all the 4 directions as above. A total of 4224 WPT-
GLCM features, 960 WPT-GLDM features and 2112 
WPT-GLRLM features were available. Hence, a cohort of 
7455 features was available for further analysis. (Table 2).

To obtain the most discriminative features from this 
cohort of 7455 features two FTFS techniques, ANOVA 
and Chi-Square, were applied. Based upon the rank-
ing specified individually by both techniques first 
eight features were selected to discriminate between 
a benign and malignant nodule. We restricted to the 
use of only first 8 features for classification for the rea-
son that use of more than 8 features was not help-
ing the classifiers to improve their metrics any further. 
The selected features for ANOVA are: Area, Perimeter, 
MajorAxisLength, MinorAxisLength, db3_LL1HH2_
WPT_GLCM_CP_450, db1_LL1LL2_WPT_GLDM_Con-
trast_450, db3_LH1LL2_WPT_GLDM_Contrast_00 and 
db3_LH1LH2_ WPT_GLCM_IDMN_1350 and that of 
Chi-Square are: Area, Perimeter, MajorAxisLength, 
MinorAxisLength, db1_LL1LL2_WPT_GLDM_Con-
trast_00, db2_LL1LL2_WPT_GLDM_Contrast_900, db3_
HL1HH2_WPT_GLRLM_GLN_00 and db1_LH1HL2_ 
WPT_GLRLM_LRHGE_00.

Subsequently, two sets of discriminative features were 
at hand for classification in next phase. (Table 3).

In this proposed study, several state-of-art classifiers; 
FGSVM, MGSVM, CGSVM, Decision Trees, BOCET, 
BACET, Ensemble Subspace Discriminant, Ensemble 
Subspace KNN, (section "Feature selection") were evalu-
ated to check the efficacy of two different sets of selected 
shape and radiomic features in detecting lung nodules. 
For classification, to get cross-validated AUC for all clas-
sifiers, fivefold cross-validation approach was used and 

evaluated around 50 times. All are evaluated and com-
pared for AUC, accuracy, sensitivity, precision and speci-
ficity. A comprehensive analysis of the above metrics 
w.r.t. different classifiers as well as the ranking algorithms 
is provided in Table 4. The summarized results are given 
in Figs. 3, 4.

Discussion
In latest research the related literature has continually 
heightened the potential role of shape and radiomics 
in the characterization of lung nodules. The important 
point is to assess the boons that radiomic features can 
furnish beyond usual imaging parameters alone. In our 
experiments the shape and selected radiomics based on 
Daubechies db1, db2 and db3 WPT were checked with 
nine models of ML classifiers to determine the proficien-
cies of selected features and the model duo.

It is imperative to mention here that out of 7455 fea-
tures 4-shape-based and 4-WPT-based radiomic features, 
derived using db1, db2 and db3 kernels, are selected. This 
shows that selected wavelet-transformed texture fea-
tures have more discriminative power than classical tex-
ture features derived using GLCM, GLDM and GLRLM. 
Hence our proposed hypothesis is consistent with the 
preliminary results.

The features thus selected using each FS method, 
ANOVA and Chi-square, give good classification results 
when combined with the various ML models. The 
detailed results obtained are provided in Table 4. Based 
on the metrics obtained from different classifiers, it is 
analyzed that

	 I.	 ANOVA gives overall best sensitivity /recall 
(97.8%) with FGSVM. However, Chi-Square gives 
best values for rest of the different classifier metrics 
and sensitivity is also reasonably very good with 
FGSVM (95.7%)

Table 3  Listicle of topmost 8 significant features selected by two FTFS techniques

Rank ANOVA Chi-square test

Feature index Feature name Feature index Feature name

1 1 Area 1 Area

2 4 Perimeter 4 Perimeter

3 2 Major axis length 2 Major axis length

4 3 Minor axis length 3 Minor axis length

5 5497 db3_LL1HH2_WPT_GLCM_CP_450 248 db1_LL1LL2_ WPT_GLDM_Contrast_00

6 249 db1_LL1LL2_WPT_GLDM_Contrast_450 2682 db2_LL1LL2_WPT_GLDM_Contrast_900

7 6328 db3_LH1LL2_ WPT_GLDM_Contrast_00 6198 db3_HL1HH2_ WPT_GLRLM_GLN_00

8 6631 db3_LH1LH2_ WPT_GLCM_IDMN_1350 1646 db1_LH1HL2_ WPT_GLRLM_LRHGE_00
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Table 4  Classification results attained for nine different State-of-art classifiers using two FTFS techniques

Overall highest values are marked in bold

Feature selection 
algorithm

Classifiers (Malignant vs Benign)

AUROC Accuracy Sensitivity/
Recall/TPR

Precision/PPV Specificity/TNR

ANOVA FGSVM 0.883 0.837 0.978 0.83 0.453

MGSVM 0.904 0.864 0.923 0.895 0.706

CGSVM 0.895 0.827 0.917 0.856 0.579

Decision Trees 0.878 0.856 0.91 0.895 0.709

Ensemble Boosted Trees (BOCET) 0.905 0.866 0.917 0.902 0.727

Ensemble Bagged Trees (BACET) 0.910 0.866 0.905 0.912 0.761

Ensemble RUSBoosted Trees (RUSBOCET) 0.914 0.852 0.861 0.932 0.829

Ensemble Subspace Discriminant 0.902 0.843 0.948 0.854 0.559

Ensemble Subspace KNN 0.909 0.869 0.929 0.896 0.706

Chi-Square test FGSVM 0.911 0.865 0.957 0.872 0.615

MGSVM 0.910 0.904 0.93 0.941 0.824

CGSVM 0.910 0.869 0.922 0.901 0.723

Decision Tree 0.883 0.857 0.926 0.885 0.67

Ensemble Boosted Trees (BOCET) 0.923 0.877 0.923 0.91 0.75

Ensemble Bagged Trees (BACET) 0.929 0.891 0.935 0.918 0.772

Ensemble RUSBoosted Trees (RUSBOCET) 0.925 0.861 0.869 0.937 0.84
Ensemble Subspace Discriminant 0.911 0.86 0.948 0.872 0.621

Ensemble Subspace KNN 0.896 0.865 0.93 0.891 0.689

Fig. 3  Comparison of performance metrics for 9 prediction models using ANOVA
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	II.	 The best values for AUC, accuracy, precision and 
specificity are given by Ensemble Bagged Trees 
(92.9%), MGSVM (90.4%), MGSVM (94.1%) and 
Ensemble RUSBoosted Trees (84%) respectively 
using Chi-Square test.

	III.	 Chi-square FS technique gives better performance 
results than ANOVA.

	IV.	 Analyzing sensitivity/recall metric it can be spotted 
that all classifiers are furnishing promising results 
but Ensemble RUSBoosted Trees.

	V.	 Also, MGSVM (Chi-Square) gives comparatively 
better outcomes for different evaluation metrics. 
(AUROC = 91%0, Accuracy = 90.4%, Sensitiv-
ity = 93%, Specificity = 82.4%, Precision = 94.1%)

The outcomes show that the methodology, specifi-
cally CT Daubechies WPT transformed texture features, 
can be successfully used for the classification of pulmo-
nary nodules into benign or malignant. As a result, the 
approach described in this work may offer a viable stand-
in for the precise prediction of LC, leading to early and 
more efficient treatment.

Comparison with previous work
Comparison of above proposed models, using two 
FS methods and nine cutting edge ML methods, with 
the previous work presented in Tables  5 and 6. The 
comparison has been made using AUC, accuracy, 

sensitivity, precision and specificity. But sensitiv-
ity and precision are the metrics that are more sig-
nificant for the clinicians in assessing the predictive 
power of the model in cancer prediction. Considering 
the three parameters namely accuracy, sensitivity and 
precision it is clear that the best values are attained by 
proposed model 9 (Radiomics + Ensemble Subspace 
KNN, 86.9%), proposed model 1 (Radiomics + FGSVM, 
97.8%) and proposed model 7 (Radiomics + Ensem-
ble RUSBoosted Trees, 93.2%), respectively, using 
ANOVA as the FS method in comparison to mod-
els proposed in [43, 44]. Similarly, the best values 
for AUROC, accuracy, sensitivity and precision are 
attained by proposed model 15 (Radiomics + Ensem-
ble Ensemble Bagged Trees, 92.9%), proposed model 
11 (Radiomics + MGSVM, 90.4%), proposed model 10 
(Radiomics + FGSVM, 95.7%) and proposed model 11 
(Radiomics + Ensemble MGSVM, 94.1%), respectively, 
using Chi-square as the FS method when compared to 
methodologies given in [43, 44]. Although, methodolo-
gies employed in [43, 44] are based on deep learning, 
which are mostly thought of giving more promising 
results, our above proposed models are giving com-
paratively better results. This may be attributed to the 
use of FS methods and the ML classification models 
employed. Hence, we are confident that in a few years, 
radiomics and ML  will be successfully integrated to 
come up with an efficient and  effective  automated 
assessment aid for radiologists.

Fig. 4  Comparison of performance metrics for 9 prediction models using Chi-square
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Conclusions
LC stands as the prevailing and most fatal form of can-
cer, accounting for 2.21 million fresh cases and result-
ing in 1.80 million fatalities.. The key to fighting lung 
cancer is early diagnosis of pulmonary lesions and nod-
ules. CT  imaging  provides unparalleled insight into 
the intricate landscape of lung structures. In recent 
decades, CAD  systems for lung nodule identification 
have received considerable attention and investigation. 
Investigating shape and radiomics based on texture 
extracted using Daubechies WPT, a high-throughput 
computer approach for quantitative CT image analysis 
was the aim of this study.

In this study, LIDC dataset consisting of 1018 CT 
images is utilized for experimentation. From the 

sub-images of 11 × 11 pixels around the nodule cen-
troid, shape features, features using three statistical 
texture analysis approaches, i.e. GLCM, GLDM, and 
GLRLM, and Daubechies WPT texture features are 
extracted. Filter Type feature selection algorithms were 
used to determine relevant features; Chi-square and 
ANOVA. After extensive attribute selection eight fea-
tures were selected as the most significant ones. Finally, 
classification of cancer into benign or malignant was 
performed using different cutting-edge ML classifi-
ers. The results show that, BACET gives best AUROC 
(92.9%), MGSVM gives best accuracy (90.4%), FGSVM 
yields the best sensitivity (97.8%), MGSVM gives best 
precision (94.1%) and RUSBOCET gives best specificity 
(84%). The outcome is better than many cutting-edge 

Table 5  Performance metrics of proposed models compared with earlier research using ANOVA FS

Bold values give the highest values attained in that column

Methods Database Results (%)

AUROC Accuracy Sensitivity Precision Specificity

Cai, J et al. [43] Deep Learning LIDC 88.1 84.6 83.7 – 85.2
Wang et al. [44] Deep Learning LIDC 92.75 85.23 92.79 84.56 72.89

Proposed model 1 Radiomics + FGSVM LIDC 88.3 83.7 97.8 83 45.3

Proposed model 2 Radiomics + MGSVM LIDC 90.4 86.4 92.3 89.5 70.6

Proposed model 3 Radiomics + CGSVM LIDC 89.5 82.7 91.7 85.6 57.9

Proposed model 4 Radiomics + Decision Tree LIDC 87.8 85.6 91.0 89.5 70.9

Proposed model 5 Radiomics + Ensemble Boosted Trees LIDC 90.5 86.6 91.7 90.2 72.7

Proposed Model 6 Radiomics + Ensemble Bagged Trees LIDC 91.0 86.6 90.5 91.2 76.1

Proposed model 7 Radiomics + Ensemble RUSBoosted Trees LIDC 91.4 85.2 86.1 93.2 82.9

Proposed model 8 Radiomics + Ensemble Subspace Discriminant LIDC 90.2 84.3 94.8 85.4 55.9

Proposed model 9 Radiomics + Ensemble Subspace KNN LIDC 90.9 86.9 92.9 89.6 70.6

Table 6  Performance metrics of proposed models compared with earlier research using Chi-square FS

Bold values give the highest values attained in that column

Methods Database Results (%)

AUROC Accuracy Sensitivity Precision Specificity

Cai, J et al. [43] Deep Learning LIDC 88.1 84.6 83.7 – 85.2
Wang et al. [44] Deep Learning LIDC 92.75 85.23 92.79 84.56 72.89

Proposed model 10 Radiomics + FGSVM LIDC 91.1 86.5 95.7 87.2 61.5

Proposed model 11 Radiomics + MGSVM LIDC 91.0 90.4 93.0 94.1 82.4

Proposed model 12 Radiomics + CGSVM LIDC 91.0 86.9 92.2 90.1 72.3

Proposed model 13 Radiomics + Decision Tree LIDC 88.3 85.7 92.6 88.5 67.0

Proposed model 14 Radiomics + Ensemble Boosted Trees LIDC 92.3 87.7 92.3 91.0 75.0

Proposed Model 15 Radiomics + Ensemble Bagged Trees LIDC 92.9 89.1 93.5 91.8 77.2

Proposed model 16 Radiomics + Ensemble RUSBoosted Trees LIDC 92.5 86.1 86.9 93.7 84.0

Proposed model 17 Radiomics + Ensemble Subspace Discriminant LIDC 91.1 86.0 94.8 87.2 62.1

Proposed model 18 Radiomics + Ensemble Subspace KNN LIDC 89.6 86.5 93.0 89.1 68.9
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methodologies. Therefore, the proposed methodologies 
can be successfully used for the classification of pulmo-
nary nodules based on CT images and thus can help cli-
nicians to reach better decisions and treatments.

In future work, the study can be extended to the use 
of other FS methods, applying ML and deep learning 
techniques experimented with nature-inspired optimiza-
tion approaches, considering different lung cancer data-
sets  for  earlier diagnostics, better decisions, and better 
lung cancer outcomes.
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