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Abstract 

The integration of artificial intelligence (AI) in cardiovascular imaging has revolutionized the field, offering significant 
advancements in diagnostic accuracy and clinical efficiency. However, the complexity and opacity of AI models, 
particularly those involving machine learning (ML) and deep learning (DL), raise critical legal and ethical concerns 
due to their "black box" nature. This manuscript addresses these concerns by providing a comprehensive review of AI 
technologies in cardiovascular imaging, focusing on the challenges and implications of the black box phenomenon. 
We begin by outlining the foundational concepts of AI, including ML and DL, and their applications in cardiovascular 
imaging. The manuscript delves into the "black box" issue, highlighting the difficulty in understanding and explain-
ing AI decision-making processes. This lack of transparency poses significant challenges for clinical acceptance 
and ethical deployment. The discussion then extends to the legal and ethical implications of AI’s opacity. The need 
for explicable AI systems is underscored, with an emphasis on the ethical principles of beneficence and non-malef-
icence. The manuscript explores potential solutions such as explainable AI (XAI) techniques, which aim to provide 
insights into AI decision-making without sacrificing performance. Moreover, the impact of AI explainability on clinical 
decision-making and patient outcomes is examined. The manuscript argues for the development of hybrid models 
that combine interpretability with the advanced capabilities of black box systems. It also advocates for enhanced 
education and training programs for healthcare professionals to equip them with the necessary skills to utilize AI 
effectively. Patient involvement and informed consent are identified as critical components for the ethical deploy-
ment of AI in healthcare. Strategies for improving patient understanding and engagement with AI technologies are 
discussed, emphasizing the importance of transparent communication and education. Finally, the manuscript calls 
for the establishment of standardized regulatory frameworks and policies to address the unique challenges posed 
by AI in healthcare. By fostering interdisciplinary collaboration and continuous monitoring, the medical community 
can ensure the responsible integration of AI into cardiovascular imaging, ultimately enhancing patient care and clini-
cal outcomes.
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Introduction
The pervasive integration of AI in cardiovascular imag-
ing raises pertinent legal and ethical considerations. The 
increasing complexity of AI models, particularly those 
involving machine learning (ML) and deep learning (DL), 
introduces the challenge of the "black box"—a term that 
describes the opacity of AI decision-making processes 
[1]. This challenge raised concerns about the explicability 
and transparency of AI systems, which are essential for 
their ethical deployment and clinical acceptance [2].

Despite numerous advancements in AI-driven cardio-
vascular imaging, existing reviews often focus predomi-
nantly on technical enhancements and clinical outcomes, 
with less emphasis on how these AI models make deci-
sions or on the mechanisms underlying their outputs 
[3]. This gap underscores a vital need for comprehensive 
reviews that not only explores these advanced technolo-
gies but also delves into the ethical and practical implica-
tions of their opaque nature.

This manuscript is structured to first outline the basic 
concepts and technologies underpinning AI in cardiovas-
cular imaging, followed by an exploration of the "black 
box" phenomenon. Subsequent sections discuss legal, 
ethical, and practical challenges, culminating in a discus-
sion on future directions that bridge gaps between tech-
nical capabilities and clinical needs. Our goal is to furnish 
clinicians, researchers, and policymakers with a deeper 
understanding of AI’s potential and limitations in cardio-
vascular healthcare.

An overview on AI
AI involves developing computer programs that perform 
complex tasks mimicking human cognition. A key com-
ponent of AI, machine learning (ML), enables algorithms 
to learn from data, improve performance, and make pre-
dictions [4]. Advances in computational power and big 
data have propelled ML’s application in healthcare [5]. 
The rise of smart devices and electronic medical records 
has expanded data availability, enhancing ML algorithm 
performance despite data complexity [6].

ML training may be either “supervised” or “unsuper-
vised.” In supervised training, an ML model is trained on 
a range of inputs in association with a known outcome 
which is supervised, either in accordance to an objec-
tive classification metric or by a domain expert. In con-
trast, unsupervised training refers to the development of 
a model to explore the patterns or clusters that are not 
well-defined inside datasets. In this form, the model is 
only provided by unlabeled input data and does not learn 
to fit data to an outcome [7].

Deep learning (DL), a subset of ML, is another cru-
cial concept in AI. DL is programmed to process data 
with large artificial neural networks through multiple 

processing layers, resembling the working of biological 
neurons [8]. It has achieved impressive results when used 
for complex tasks involving very high-dimensional data, 
including speech and image recognition to self-driving 
cars [9, 10]. Deep learning models utilize numerous layers 
of hidden neurons to generate increasingly abstract and 
nonlinear representations of the underlying data. This 
process, known as "representation learning," constitutes 
a pivotal aspect of deep neural networks. Following the 
acquisition of these representations, final output nodes 
are frequently utilized as inputs for logistic regression 
models or support vector machines (SVMs) to perform 
the ultimate regression or classification tasks. Convolu-
tional neural networks (CNNs) and recurrent neural net-
works (RNNs) represent two prominent forms of deep 
learning models for supervised learning. The primary 
distinction between CNNs and RNNs lies in their respec-
tive layer designs. Beyond these methods, there exists a 
diverse array of deep neural network architectures.

CNNs resemble fully connected neural networks, com-
prising neurons with adjustable weights and biases. Their 
potency stems from the capacity to establish local con-
nectivity across images or signals. These localized con-
nections incorporate nonlinear activation functions, 
facilitating the transformation of representations into 
higher, slightly more abstract forms. Furthermore, shared 
weights across layers, layer pooling, and the integration 
of numerous hidden layers enable the learning of highly 
intricate functions. In contrast, RNNs excel in processing 
sequential data such as speech and language. Comprised 
of an additional hidden state vector, RNNs retain "mem-
ory" regarding the historical data observations, rendering 
them well-suited for tasks involving sequential informa-
tion [11, 12].

In recent years, generative AI (GAI), a subtype of AI, 
peaked with the introduction of new language and image 
models that showed unprecedented capabilities. GAI 
models can now create images or even videos from text 
input, edit images from text prompts, and generate text 
taking part in complete conversations. These models have 
also openly available feeding more fuel into the surge of 
GAI’s popularity among the general public. Hence, this 
allowed non-technical users to experiment with use cases 
in various domains and specialties. GAI can be routed 
back to the advancement of specifically two type of net-
works: transformers, which are more complex forms 
of RNNs and GANs which use two different CNNs and 
train them together in an adversarial manner.

While RNNs excel at handling sequential data by main-
taining a hidden state that captures the essence of previ-
ous inputs, they struggle with long-range dependencies 
and parallel processing. The transformer overcomes these 
limitations by introducing self-attention mechanisms, 
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which allow the model to weigh the importance of each 
word in a sequence relative to all other words, rather 
than relying solely on the sequential processing inher-
ent in RNNs. The transformer’s architecture eliminates 
the need for recurrent connections, enabling it to process 
all tokens in a sequence simultaneously. This parallelism 
significantly enhances efficiency and allows the model 
to capture long-term dependencies more effectively. The 
use of multi-head self-attention within the transformer 
ensures that the model can focus on different parts of the 
sequence simultaneously, leading to a richer and more 
nuanced understanding of context. Transformers paved 
the way to the remarkable power and admirable status of 
Large Language Models (LLMs) like ChatGPT today [13].

Generative Adversarial Networks (GANs), on the other 
hand, are highly effective in generating realistic data 
across various domains, such as images, video, and audio. 
GANs consist of two neural networks—a generator and 
a discriminator—that are trained together in a competi-
tive setting. The generator attempts to produce data that 
mimics the real data distribution; while, the discrimina-
tor tries to distinguish between real and generated data. 
This adversarial process pushes the generator to create 
increasingly convincing outputs, ultimately resulting in 
the generation of highly realistic data [14].

Teaching Points:

•	 AI and ML are critical for performing tasks that 
mimic human cognition, with ML enabling algo-
rithms to learn from data and improve predictions.

•	 Deep Learning, a subset of ML, uses large neural net-
works to process complex data, excelling in tasks like 
image and speech recognition.

•	 GAI models, powered by transformers and GANs, 
are revolutionizing AI applications by creating realis-
tic data, such as images and text, from simple inputs.

AI applications in cardiovascular imaging
AI can analyze vast amounts of image data to identify 
subtle patterns and anomalies that may be overlooked by 
human experts. For instance, AI-powered systems can 
accurately quantify coronary artery stenosis from CT 
angiography in real time [15]. Neural networks can also 
be trained with the appropriate data to detect early signs 
of heart failure from chest X-rays [16]. Such applications 
can lead to earlier and more accurate diagnoses, enabling 
timely interventions and improved patient outcomes. 
Beyond diagnostic capabilities, AI is optimizing imaging 
workflows. Automated image acquisition, reconstruction, 
and segmentation tasks reduce human error and expedite 
the interpretation process [17]. Additionally, AI-driven 
predictive models can identify patients at high risk for 

cardiovascular events based on imaging data, allowing 
for proactive risk management strategies [18].

Generative AI (GAI) is revolutionizing cardiovascular 
imaging by enhancing image quality, automating complex 
tasks, and improving diagnostic precision across various 
modalities [19].In Cardiac MRI (CMR), for example, GAI 
plays a crucial role in accelerating image reconstruction 
and reducing motion artifacts, with methods like those 
developed by Ghodrati et  al. enabling free-breathing 
scans, thus enhancing patient comfort and scan effi-
ciency [20]. Advanced reconstruction techniques such as 
variational neural networks (VNNs) allow for high-qual-
ity imaging from undersampled data, significantly reduc-
ing scan times without compromising accuracy [21]. 
This is particularly beneficial for procedures requiring 
detailed volumetric and functional analysis of the heart, 
making CMR more accessible and reliable for clinical 
decision-making.

In Cardiac Computed Tomography (CCT), GAI-based 
approaches have shown significant promise in improving 
both image quality and diagnostic accuracy. AI-driven 
algorithms, such as Itu et al.’s method for Fractional Flow 
Reserve CT (FFR-CT), have drastically reduced analy-
sis time while maintaining high predictive accuracy, 
showcasing the potential of AI to enhance non-invasive 
coronary artery disease (CAD) evaluation [22]. These AI-
powered advancements are not only streamlining clinical 
workflows but also providing more consistent and reli-
able diagnostic information, ultimately improving patient 
outcomes in cardiovascular care. Table 1 provides over-
view of the AI concepts and applications discussed in this 
section.

Teaching Points:

•	 AI improves diagnostic accuracy by identifying subtle 
patterns in cardiovascular imaging, such as detecting 
coronary artery stenosis and early heart failure.

•	 AI optimizes imaging workflows by automating tasks 
like image acquisition and reconstruction, reducing 
human error and speeding up diagnosis.

The “black box” challenges
The "black box" nature in AI models
Despite these benefits, the complexity of AI models, par-
ticularly deep learning methods, poses significant chal-
lenges [23, 24]. In the context of AI in radiology, "Black 
box" refers to situations where the AI model’s decision-
making process is opaque or not easily understandable by 
humans. This means that while the AI can provide results 
or recommendations, the underlying reasoning or mech-
anisms that led to these conclusions are not transparent. 
Such indications can pose challenges in clinical settings 
because clinicians may not fully understand or trust the 
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AI’s outputs, which can impact patient care [25, 26]. 
Understanding and explaining AI’s decisions is crucial for 
clinical acceptance and ethical deployment [27].

Ensuring the reliability of an AI system requires dem-
onstrating that the system has learned the underlying 
properties and that the decisions made are not based on 
irrelevant correlations between input and output values 
in the training dataset [28]. While it is possible to mini-
mize an AI method’s weaknesses by carefully selecting its 
model architecture and training algorithm, errors cannot 
be eliminated [29].

The ability of different AI models to understand gener-
ated models varies significantly. With the emergence of 
new and powerful DL methods, it is becoming increas-
ingly difficult to reconstruct decisions. Frequently, the 
resulting models function as “black boxes,” rendering it 
arduous for users to comprehend the internal processes 
[28]. Users can only understand input and output values, 
despite designers possessing an understanding of the 
system’s architecture and the methodologies employed 

to generate the models [30]. In contrast, interpretable 
models are referred to as white boxes, where weights are 
assigned to each feature, allowing for easy reading and 
interpretation while an intermediate stage between the 
two is the gray box. Gray box models provide a certain 
level of insight into internal data processing [31].

It is important to note that in practice, a method can-
not always be clearly classified as a white, gray, or black 
box method. Thus, to address the issue of lack of explain-
ability, there is a need for explanation models for black 
box models, which help in understanding how they work. 
Figure 1 provides visual representation of the black box 
problem in comparison with explainable AI.

Challenges and limitations associated with AI’s “Black‑Box” 
nature in cardiovascular imaging
As stated before, the decision-making process of AI is 
often unclear, which presents a challenge in interpret-
ing and understanding its results. Although the results 
of DL in cardiovascular imaging are promising, they 

Table 1  AI Concepts and Applications

Concept Key points Applications

AI and ML in healthcare AI mimics human cognition Broad application in healthcare for complex tasks

ML enables algorithms to learn and predict from data Used for pattern recognition, prediction, and diagnosis

ML training types Supervised: Trained with known outcomes Diagnostic tool training, outcome prediction

Unsupervised: Finds patterns in unlabeled data Clustering patient data, anomaly detection

Deep learning (DL) Utilizes large neural networks Image and speech recognition, autonomous systems

Representation learning through multiple layers Enhanced diagnostic accuracy, particularly in imaging

DL models CNNs: Local connectivity in images, nonlinear activation Image analysis, feature extraction in medical imaging

RNNs: Sequential data processing with memory Natural language processing, time-series data analysis

Generative AI (GAI) Creation of images, text, videos Enhancing diagnostic imaging, automated content 
generation

Transformers Self-attention mechanisms, parallel processing Large Language Models (e.g., ChatGPT), text analysis, 
complex tasks

GANs Adversarial training for realistic data generation Image and video generation, audio synthesis, anomaly 
detection

AI in cardiovascular imaging Early detection of diseases, workflow optimization, and risk 
prediction

CT angiography for coronary artery stenosis, heart failure 
detection

GAI in CMR and CCT for improved image quality and diag-
nostic accuracy

Accelerated scan times, non-invasive coronary artery 
disease evaluation

Fig. 1  Visual representation of the black box problem in comparison with explainable AI
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are still modest, and several challenges must be over-
come to improve them [32]. Common deep learning 
architectures, such as convolutional neural networks 
(CNNs), generative adversarial networks (GANs), and 
recurrent neural networks (RNNs) do not provide 
explanations for their outcomes [33]. In the clinical 
context, the most important challenge is often referred 
to as a black box. Therefore, in the health sector, devel-
oping explainable machine learning systems remains a 
top priority for computer scientists, policymakers, and 
users [34].

There is currently no agreed-upon definition for 
explainability, despite the consensus on the impor-
tance of developing and implementing interpretable 
models [35]. For instance, Luo et  al. proposed a new 
data preprocessing technique for detecting cardiac dis-
eases using cardiac magnetic resonance (CMR) imag-
ing and a new network structure for the estimation 
of left ventricular volume. Their study demonstrated 
that the method had high accuracy in predicting left 
ventricular (LV) volumes. However, they pointed out 
a significant challenge commonly encountered in deep 
learning methods—the lack of interpretability for phy-
sicians. Achieving true interpretability in LV volume 
prediction may for example mean enabling physicians 
to identify the specific pixels used in blood volume 
computations. They emphasized that future research 
should focus on achieving interpretability in the direct 
prediction of LV volumes [36].

Even though AI algorithms can detect coronary 
artery disease, heart failure, conduction abnormalities, 
and valvular heart disease and aid in diagnoses, the 
lack of transparency raises concerns about their reli-
ability, interpretability, and potential biases. To ensure 
that AI’s clinical integration aligns with practical 
standards in healthcare, it is essential to understand 
the inner workings of these algorithms.

Teaching Points:

•	 The complexity of AI models, particularly deep 
learning methods, often leads to a "black box" phe-
nomenon, where the decision-making process is 
not transparent and difficult to interpret.

•	 Explainability is crucial for clinical acceptance and 
ethical deployment of AI in healthcare, yet remains 
a challenge due to the opaque nature of many AI 
models.

•	 In cardiovascular imaging, the lack of transpar-
ency in AI models raises concerns about reliabil-
ity, interpretability, and potential biases, making 
explainable AI a priority.

Impact of explainability on clinical 
decision‑making and patients’ outcomes 
in cardiovascular imaging AI
As elaborated before, in cardiovascular imaging, AI 
has an essential role, and understanding how it works 
is essential for effective implementation [37]. Evidence-
based medicine is challenged by the opaqueness of ML 
models, especially in medical imaging. In evidence-
based medicine, clinical decisions are informed by the 
best available evidence from scientific research, com-
bined with clinical expertise and patient values. This 
approach relies heavily on transparent and interpretable 
data and models, allowing clinicians to understand the 
rationale behind recommendations or decisions. How-
ever, ML models, including those used in CV imaging, 
often operate as "black boxes," meaning their internal 
decision-making processes are not easily interpretable 
or explainable. This lack of transparency poses a sig-
nificant challenge for evidence-based medicine because 
clinicians may struggle to trust or understand the out-
puts of these models, hindering their ability to integrate 
them effectively into clinical practice. In the context of 
CVS imaging, where accurate diagnosis and treatment 
decisions are paramount, the opaqueness of ML models 
can lead to uncertainty or skepticism among healthcare 
professionals. Clinicians may hesitate to rely on ML-
based recommendations without a clear understanding 
of how the model arrived at its conclusions.

One of the significant challenge is related to error 
detection. It is plausible that AI systems may some-
times deviate from accepted standards of clinical deci-
sion-making [38]. Image classification algorithms, such 
as convolutional neural networks, are particularly sus-
ceptible to unexpected and unusual classification errors 
[39], leading to difficulty in comprehending the causal 
factors influencing these ML models’ correlations. This 
ambiguity can undermine healthcare practitioners’ con-
fidence in relying on AI predictions, particularly when 
they conflict with conventional clinical judgment [40]. 
To optimize ML systems, it’s imperative to comprehend 
their decision-making process. AI explainability allows 
individuals to understand how an AI model makes 
decisions, going beyond just improving AI actions [41].

Qualitative research indicates that clinicians prior-
itize pertinent and easily comprehensible ML model 
information to make informed decisions. A study con-
ducted by Tonekaboni et al. found that clinicians do not 
necessarily prefer to understand the causal mechanisms 
of action behind ML decision-making. Instead, they 
prefer easily understandable and relevant information 
about how the model works in the context of health-
care decision-making. This information may include 
confidence scores, the reasoning behind a decision, and 
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details that are tailored to the specific clinical context 
[27].

Lang and colleagues also have pointed out that some 
of the most effective applications of AI in cardiovascu-
lar imaging may not be explainable. This has raised con-
cerns among some experts who suggest that the use of 
unexplainable models should be stopped due to the sig-
nificant problems they may pose [38, 42]. In conclusion, 
while technical experts may not possess comprehensive 
understanding of machine learning (ML) algorithms, it 
is imperative that these systems furnish outputs or asso-
ciated information enabling users to assess predictions 
pertinent to their clinical decision-making. Although 
efforts are underway to develop mechanisms for contex-
tualizing ML predictions based on user needs, achieving 
full comprehension of AI predictions remains an evolving 
research frontier [43]. Table 2 provides and overview of 
the importance of.

Teaching Points.

•	 The lack of transparency in AI models, particularly 
in cardiovascular imaging, poses a challenge to evi-
dence-based medicine by making it difficult for clini-
cians to understand and trust AI-generated recom-
mendations.

•	 The opaqueness of AI models can undermine health-
care professionals’ confidence, especially when AI 
predictions conflict with traditional clinical judg-
ment.

•	 Clinicians prioritize AI outputs that are relevant, 
easily comprehensible, and tailored to specific clini-
cal contexts, even if they do not fully understand the 
underlying mechanisms.

Legal and ethical implications
Challenges related to unexplainable AI in healthcare
The opacity in AI systems introduces significant legal and 
ethical challenges in healthcare. Clinician trust is cru-
cial for AI integration into clinical workflows. A lack of 
explainability and transparency can lead to ethical dilem-
mas and affect reliance on AI for patient care [44]. Ethical 

principles such as beneficence (acting in the best inter-
est of patients) and non-maleficence (do no harm) come 
into play when considering the potential risks associated 
with using AI systems with opaque decision-making pro-
cesses. Transparency in algorithmic processes is key to 
facilitating comprehension [45]. In clinical settings, AI 
techniques must provide justifications for their decisions 
to increase clinicians’ confidence in the accuracy of the 
results [46]. The use of AI models with low transparency 
or interpretability also raises concerns about accountabil-
ity, patient safety, and decision-making processes. From 
a legal perspective, the issue of clinician trust intersects 
with liability and accountability. If clinicians rely on AI-
driven diagnoses or treatment recommendations with-
out fully understanding the rationale behind them, it can 
complicate matters in cases of medical errors or adverse 
outcomes. Determining responsibility becomes chal-
lenging when the decision-making process of AI remains 
opaque, potentially raising questions about liability and 
legal accountability [38].

Unfortunately, many AI-based cardiovascular imaging 
applications often exhibit an unexplainable "black box." It 
can be challenging to evaluate the clinical risks and ben-
efits of unexplainable models, particularly when there is 
a risk of biased decision-making. The challenge becomes 
even greater when it comes to distinguishing between 
AI models that can be explained and those that cannot 
[30]. The use of unexplainable AI in medical applications 
has been a topic of debate in recent times. While some 
argue that regulations should deal more strictly with the 
unexplainable models, others believe that stricter regu-
lations might impede innovation, clinical adoption, and 
lead to suboptimal patient outcomes [38]. The replication 
of clinical trials for technically unexplained models is 
uniquely challenging since commercial developers often 
do not wish to divulge their trade secrets [47]. Neverthe-
less, it is essential to recognize that the uncertainty sur-
rounding medical interventions is not a new challenge. 
However, it is essential to recognize that the unique com-
plexities of AI-based cardiovascular imaging applications 
warrant careful consideration of whether distinct regula-
tory approaches are necessary. This includes adherence 

Table 2  Explainability in AI for cardiovascular imaging

Concept Key points Challenges

Explainability in evidence-based medicine Lack of transparency in AI models hinders evidence-
based clinical decision-making

Clinicians struggle to trust and integrate AI recom-
mendations

Clinical confidence The opaqueness of AI can lead to uncertainty 
and skepticism among healthcare professionals

Difficulty in relying on AI predictions when they 
conflict with clinical judgment

Relevant and understandable outputs Clinicians prefer AI outputs that are easily interpret-
able and relevant to clinical contexts

Need for AI systems to provide information 
that supports clinical decision-making without full 
model comprehension
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to validation plans and regulations set forth by regulatory 
bodies such as the FDA for the deployment of medical 
AI. [30].

Legal frameworks governing unexplainable AI extend 
to medical malpractice, making it more difficult for cli-
nicians to set standards of care. The changing landscape 
necessitates a reevaluation of professional expectations 
and guidelines. Increasingly, AI-based care poses chal-
lenges to traditional ethical beliefs, as automated deci-
sion-making impacts comprehensibility [38, 48].

Another challenge in the context of unexplainable AI is 
the concept of informed consent. Clinical experts believe 
that informed consent is essential before using AI on 
patients. They also believe that computer-aided detection 
applications should be disclosed in reports, explaining 
the reasons for eventual disagreement. The provision of 
inaccurate information to patients and clinicians about 
the risks of AI algorithms may indeed constitute a breach 
of the duty of care, so the adequacy of information pro-
vided to users is crucial in making judgments. When it 
comes to information, however, they wonder what exactly 
needs to be disclosed to the patient [49]. These challenges 
become more sophisticated in the use of unexplainable 
AI. Patients have the right to understand and agree to the 
procedures or treatments suggested by AI algorithms.

Some proposals are made to avoid some legal and ethi-
cal issues: one possible solution is to efficiently extract 
interpretable features for disease classification by lever-
aging the power of deep learning. Researchers proposed 
techniques for extracting features from deep learning 
models that are not only accurate for disease classifica-
tion but also interpretable by healthcare professionals. By 
leveraging the capabilities of deep learning algorithms, 
these techniques aim to identify and extract meaning-
ful and interpretable features or patterns from medical 
images that are indicative of specific diseases or con-
ditions [50]. This approach allows clinicians to better 
understand how the deep learning model arrives at its 
predictions by providing insights into the features or 
characteristics of the medical images that contribute to 
the classification process.

Another approach is to provide visible explanations 
of the output of neural networks after their application 
to medical images. GRADCAM, short for Gradient-
weighted Class Activation Mapping, is a technique used 
in computer vision and deep learning for visualizing and 
understanding the decision-making process of convolu-
tional neural networks (CNNs). It works by generating 
a heatmap that highlights the regions of an input image 
that are most important for CNN’s classification decision. 
This heatmap is produced by computing the gradient of 
the predicted class score with respect to the final convo-
lutional layer of the CNN. By visualizing which parts of 

the input image contribute most strongly to the network’s 
decision, GRADCAM provides valuable insights into 
how the model is processing the data and making pre-
dictions. This can significantly improve the understand-
ing of the decisions made by these networks and enhance 
the trust and adoption of AI technologies among medi-
cal professionals [45]. An example of GRADCAM use in 
a cardiovascular context was highlighted by Zhang et al., 
where they employed attention supervision in a deep 
learning model to guide a multi-stream Convolutional 
Neural Network (CNN) to focus on specific myocardial 
segments for automated motion artifact detection in car-
diac T1-mapping [51]. However, some commentators 
have suggested it may be necessary to abandon unex-
plainable AI models. This is due to the significant prob-
lems that arise from the use of such models, which may 
be difficult to explain or understand [47].

European and American Multi-society Statement high-
lights numerous AI-related ethical challenges and oppor-
tunities. Recognizing the need for practical guidelines, a 
framework has been called for to assist AI practitioners. 
However, it’s worth noting that the rapid pace of change 
in AI techniques and tools makes it challenging to main-
tain a comprehensive and up-to-date understanding of 
the ethical landscape [52, 53].

Physician liability and fault
The use of unexplainable AI models in cardiovascular 
imaging raises complex questions regarding physician lia-
bility within the existing medical malpractice framework. 
The foundation of medical practice is based on the duty 
of care, which includes providing treatment, informa-
tion, follow-up, and maintaining patient confidentiality. 
However, the evolving landscape of AI in clinical settings 
introduces uncertainties regarding the appropriate stand-
ard of care for clinicians employing unexplainable models 
[38, 54].

At present, regulations do not appear to conceive 
of any legally significant distinction between medical 
imaging AI models that can be explained and those that 
cannot, leaving the question open as to whether this reg-
ulatory approach appropriately balances patient interests, 
and whether it strikes a balance between innovation and 
safety.

As establishing a direct link between breach of duty and 
patient harm becomes increasingly difficult in AI-related 
medical malpractice, causation becomes especially intri-
cate. In cases of unexplainable AI models contributing 
to patient injury, true causation, determined by a "but-
for" test, may prove elusive [55]. A legal cause-and-effect 
analysis adds to the complexity, especially with models 
that operate beyond human comprehension and are tech-
nically unexplainable [38]. It is difficult to hold physicians 
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legally responsible for injury under circumstances where 
foreseeable outcomes are difficult to identify.

Physicians must provide treatment consistent with pro-
fessional best practices as mandated by law. When some-
one claims medical malpractice, they must prove that a 
physician failed to meet their duty of care and that as a 
result, they suffered legally recognizable harm. Courts 
face considerable challenges when it comes to adopting 
perspectives about the unexplainable nature of AI models 
in medical imaging, potentially complicating the attribu-
tion of liability [56]. Establishing standards of care and 
legal causation in medical malpractice cases is a complex 
task and presents inherent difficulties. Furthermore, the 
introduction of unexplainable medical AI adds another 
layer of complexity in product liability cases, leading to 
discussions on whether manufacturers should be held 
accountable for the unforeseeable outcomes of their 
products [56]. For instance, if a DL-powered model is 
used for cardiovascular CT image reconstruction and a 
patient is injured due to misdiagnosis of a cardiovascu-
lar abnormality, it may not be immediately clear whether 
the physician is responsible for the injury, even if a court 
finds that the physician breached their duty of care. Nota-
bly, the automatic presumption of fault in product liabil-
ity regimes contrasts with the evidence-based approach 
in civil liability regimes [45].

Currently, the European and North American Multi-
society Statement mentioned that physicians, includ-
ing radiologists, are held liable in cases where "standard 
of care" is not provided. In cases where Al is used as a 
decision aid, radiologists will likely still be considered 
liable, though it is probable that litigation will also accuse 
Al product manufacturers. Since models incorporate 
large amounts of data, some of which are not percepti-
ble to humans, the question will arise whether physicians 
should remain solely responsible or whether responsi-
bility should be shifted to those who produce, market, 
and sell models. If, for example, low-dose CT images are 
enhanced by an algorithm to improve image quality, but 
this processing alters an important, but subtle feature so 
much that it is barely perceptible, the software developer 
should be liable for this. In the end, it is up to practice 
and case law to resolve these complex legal issues [52]. 

The American College of Radiology (ACR) also believes 
that, for now, since there are no diagnostic radiology 
models cleared for autonomous use in the U.S., radiolo-
gist responsibility remains solely with them.

Ultimately, the evolving landscape of medical AI neces-
sitates careful consideration of regulatory approaches, 
ongoing technological advancements, and dynamic inter-
pretations by courts. It is still difficult to strike a balance 
between encouraging innovation, ensuring patient safety, 
and setting clear standards of accountability. Despite 
existing literature discussing multiple liability theories 
about AI use, a definitive and unanimous answer to this 
issue has not yet been found [49]. In the coming years, 
solutions that improve interpretability and transparency 
while considering ethical considerations will play a piv-
otal role in shaping the responsible integration of AI into 
cardiovascular imaging. Table 3 provides a brief overview 
of the ethical and legal implications of unexplainable AI 
in CVS imaging.

Teaching Points:

•	 The opacity of AI systems raises significant ethical 
and legal challenges, particularly regarding accounta-
bility in cases of medical errors or adverse outcomes. 
Clinicians need transparency to build trust and make 
informed decisions.

•	 The use of unexplainable AI models complicates phy-
sician liability within the existing medical malprac-
tice framework. Establishing a clear standard of care 
and causation becomes increasingly difficult when AI 
decisions are not fully understood.

•	 Informed consent is crucial when using AI in health-
care. Patients have the right to understand and agree 
to AI-driven procedures or treatments, making 
transparency in AI systems vital for maintaining trust 
and ensuring patient safety.

Bridging the gap and future directions
To overcome the ethical issues and challenges associated 
with the use of unexplainable AI in healthcare, particu-
larly in cardiovascular imaging, there has been a surge of 
interest in explainable AI (XAI) techniques. This section 

Table 3  Legal and ethical implications of unexplainable AI in cardiovascular imaging

Concept Key points Challenges

Transparency and accountability Opacity in AI models leads to ethical and legal con-
cerns regarding accountability in patient care

Difficulty in assigning liability when AI decisions are 
opaque

Physician liability Unexplainable AI complicates liability issues 
within the medical malpractice framework

Challenges in establishing a standard of care and cau-
sation

Informed consent and patient safety Transparency is essential for informed consent 
and maintaining patient trust in AI-driven care

Ensuring patients and clinicians understand the risks 
and benefits of AI
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explores these techniques and outlines future directions 
to address the black box problem.

Advancements in explainable AI (XAI) Techniques 
and innovative solutions for interpretability
Model‑based versus post hoc explanation
Model-based explanation refers to models, including 
linear regression or support vector machines that are 
simple enough to be easily understood while still being 
sophisticated enough to effectively capture the relation-
ship between inputs and output [43]. These models are 
usually the traditional ML models that are simpler and 
more interpretable, in contrast to more modern complex 
models such as deep neural networks. Sparsity and simu-
latability are two well-known examples of these models. 
Sparsity refers to models that force many coefficients 
exactly to zero. Hence, this leads to a sparse model where 
only a subset of features significantly contributes to out-
put, making the inner construct of this model explainable 

[57] Simulatability implies whether a human can inter-
nally reason about the model’s computations and deci-
sion-making process. In simpler models, such as linear 
regression, it’s easier for an individual to comprehend 
how each feature contributes to the final output [58]. Fig-
ure 2 shows how some explainable models can have mini-
mal black box problem.

In contrast to model-based explanation, post hoc 
explanation trains a neural network and subsequently 
tries to elucidate the behavior of the resulting black 
box network rather than forcing the neural network 
to be explainable. This makes the post hoc to be eas-
ier to understand and more user-friendly and can be 
applied to any model, regardless of its complexity [57]. 
Techniques include inspection of the learned features, 
feature importance, interaction of features, and vis-
ual explanation by saliency maps [59–62]. However, 
the weakness of this method is its limited capacity to 
capture the full complexity of a model. Therefore, the 

Fig. 2  An illustration of how some explainable models can have minimal black box problem
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choice between these two is a trade-off between accu-
racy and interpretability and depends on the specific 
case used.

The global and local explanation
Global explanation, also called dataset-level explanation, 
refers to understanding the overall workings of a machine 
learning model across the entire dataset. It can quantify 
the importance of features and present them as scores at 
the dataset level. In this way, it is determined how much 
the features contribute to the output in the entire data set 
[60]. Local explanation explains how the model reached 
a particular decision, in every instance or data point. As 
an example, in a neural network model, the global expla-
nation can find out at the "dataset level" that high blood 
pressure can increase the risk of cardiovascular events. 
While the local explanation shows why an increase in 
blood pressure leads to an increase in the risk of cardio-
vascular events in "a single person" [57, 63].

There are examples of global and local explainability 
in cardiovascular imaging as well. In 2019, Clough et al. 
presented a classification framework for identifying car-
diac diseases using temporal sequences of cardiac MR 
segmentation based on a convolutional neural networks 
(CNN) model [64]. Their model not only performed the 
classification but, with the help of variational autoencod-
ers (VAE), also allowed global and local interpretation. 
Variational autoencoders (VAEs) are a type of generative 
model that learns a latent representation of input data 
and can reconstruct input data from a compressed latent 
space [65]. By local interpretation, they meant the abil-
ity to ask, “Which features of this particular image led to 
it being classified in this particular way?” and by global 
interpretation, they meant, “Which common features 
were generally associated with images assigned to this 
particular class?”.

Techniques for interpretable features and visual explanations
Techniques that extract interpretable features from deep 
learning models are essential for demystifying black box 
AI systems. Research should focus on developing meth-
ods that transform complex neural network representa-
tions into more understandable formats without losing 
the accuracy and robustness of the original models [45]. 
Furthermore, visual explanation tools such as Gradient-
weighted Class Activation Mapping (GRADCAM) can 
provide intuitive insights into AI decisions by highlight-
ing important regions in an image that contribute to 
the model’s output. These visual aids can help clinicians 
understand and trust AI diagnoses by showing which 
parts of an image were most influential [62].

Development of hybrid models
Hybrid models that combine interpretable models with 
black box systems can enhance transparency without 
sacrificing performance. These models can use inter-
pretable components to provide explanations and black 
box components to handle complex, high-dimensional 
data [66]. Research should focus on optimizing these 
hybrid approaches to maintain accuracy while improv-
ing interpretability.

User‑friendly interfaces
Also, designing user-friendly interfaces that present AI 
explanations in an accessible manner is crucial. Future 
research should prioritize developing tools and plat-
forms that allow clinicians to interact with and query 
AI models easily. Interactive dashboards, visualization 
tools, and customizable explanation reports can help 
make AI insights more usable and trustworthy [67].

By advancing XAI techniques and developing innova-
tive solutions for interpretability, the medical commu-
nity can enhance the transparency and trustworthiness 
of AI models in cardiovascular imaging. These efforts 
will facilitate the responsible and effective integration 
of AI technologies into clinical practice, ultimately 
leading to better patient outcomes and improved 
healthcare delivery.

Education and training for healthcare professionals
The integration of AI in healthcare, particularly in 
cardiovascular imaging, necessitates comprehensive 
education and training programs for healthcare pro-
fessionals. These programs are essential for equipping 
clinicians with the necessary skills to understand, inter-
pret, and effectively use AI models in their practice. 
Without proper training, the benefits of AI cannot be 
fully realized, and the potential for misuse or mistrust 
may increase [27].

Training programs should be designed to provide 
a robust understanding of AI concepts, including 
machine learning, deep learning, and explainable AI 
(XAI) [68]. These programs should cover both the theo-
retical foundations and practical applications of AI in 
healthcare. Clinicians need to understand not only how 
to use AI tools but also how these tools work, their lim-
itations, and the ethical considerations involved [69].

An example of successful AI training can be found in 
radiology. Many radiology departments have started 
incorporating AI training into their residency pro-
grams. These programs often include courses on AI 
fundamentals, hands-on training with AI tools, and 
case studies demonstrating AI applications in radiolog-
ical practice [70]. For instance, the Radiological Society 
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of North America (RSNA) offers educational resources 
and workshops on AI, helping radiologists stay updated 
with the latest AI advancements and best practices [71].

Workshops and continuing education programs 
(CMEs) are vital for keeping healthcare professionals 
abreast of the latest developments in AI. Organizations 
such as the American College of Cardiology (ACC) and 
the European Society of Cardiology (ESC) can play a piv-
otal role by offering regular workshops, webinars, and 
courses focused on AI in cardiovascular imaging. These 
sessions can cover new AI tools, clinical case studies, and 
interactive discussions on the challenges and benefits of 
AI integration [72].

Online platforms and resources can also provide acces-
sible training opportunities for healthcare profession-
als. In addition, developing certification programs for AI 
proficiency in healthcare can standardize training and 
ensure a high level of competency among clinicians [73]. 
Certification can also provide a benchmark for institu-
tions to assess the AI skills of their staff. For instance, a 
certification program could cover topics such as AI fun-
damentals, practical applications in cardiovascular imag-
ing, ethical considerations, and patient communication.

Patient involvement and informed consent
As AI technologies, particularly those with black box 
characteristics, become more integrated into health-
care, especially in cardiovascular imaging, it is crucial 
to focus on patient involvement and informed consent. 
Addressing the challenges associated with black box AI 
models requires specific strategies to ensure patients are 
informed and engaged in their care decisions [74]. Future 
efforts should focus on creating and refining communi-
cation strategies that help patients understand the use of 
black box AI in their care. This involves developing edu-
cational materials that clearly explain AI technologies, 
their benefits, risks, and limitations in an accessible man-
ner. Visualization tools, such as interactive diagrams or 
videos, can be particularly effective in demystifying com-
plex AI concepts [75].

To address the challenges posed by black box AI, the 
informed consent process must be enhanced. Consent 
forms should include detailed information about the AI 
technology being used, how it contributes to the diagnos-
tic or treatment process, and any potential uncertainties 
or limitations. Future work should explore standardized 
consent frameworks that can be adapted across various 
healthcare settings to ensure consistency and thorough-
ness [76].

Workshops, online courses, and informational bro-
chures can help bridge the knowledge gap and empower 
patients to participate actively in their care decisions [77]. 
In addition, future research should aim to make black 

box AI algorithms more transparent and interpretable 
to patients. This could involve developing intermediate 
explanation models or user-friendly interfaces that pro-
vide insights into how AI algorithms arrive at their con-
clusions. For instance, integrating explainable AI (XAI) 
techniques that generate patient-friendly summaries of 
the AI’s decision-making process can enhance transpar-
ency [78].

Standardization, regulatory frameworks and policy aspect 
in imaging
The lack of standardized criteria for AI explainability 
presents significant challenges for consistent assessment 
across various applications [36]. Developing standardized 
frameworks and metrics for explainability is essential to 
provide common ground for developers, clinicians, and 
policymakers [79]. These standards will help ensure that 
AI models are evaluated consistently, enhancing their 
reliability and ethical deployment [52].

Ethical challenges posed by unexplainable AI models 
necessitate robust regulatory frameworks [44]. Future 
work should focus on creating guidelines that balance 
transparency, innovation, patient safety, and account-
ability [66]. Legal frameworks must address the unique 
complexities of AI in healthcare, ensuring that ethi-
cal principles such as beneficence, non-maleficence, 
autonomy, and justice are upheld in clinical practice. 
This approach will help build trust among clinicians and 
patients, facilitating the integration of AI into healthcare 
workflows [49].

Establishing mechanisms for the regular assessment of 
AI algorithms will help identify deviations from accepted 
standards and ensure that AI systems remain aligned 
with clinical needs [80, 81]. By implementing standard-
ized explainability, robust ethical frameworks, and con-
tinuous monitoring, the medical community can ensure 
the responsible and effective use of AI in cardiovascular 
imaging and beyond.

Teaching Points:

•	 Different XAI techniques like model-based and post 
hoc explanations offer various trade-offs between 
accuracy and interpretability.

•	 Understanding both global (dataset-level) and local 
(instance-level) explanations helps in interpreting 
how AI models make decisions across different con-
texts and individual cases.

•	 Techniques like GRADCAM and feature extraction 
make complex AI models more understandable by 
highlighting important features and decision-making 
processes.

•	 Combining interpretable models with black box sys-
tems and developing user-friendly interfaces can 
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enhance both transparency and performance in AI 
applications.

•	 Comprehensive training for healthcare professionals 
on AI concepts and applications is crucial for effec-
tive and safe AI integration into clinical practice.

•	 Ensuring that patients are well-informed and 
involved in decisions regarding AI-based treatments 
is vital for ethical and effective healthcare delivery.

•	 Developing standardized criteria and robust regula-
tory frameworks for AI explainability will help bal-
ance innovation with patient safety and ethical con-
siderations.

Conclusion
The integration of AI in cardiovascular imaging holds 
great potential but is hindered by the black box nature 
of most of the conventional models used in AI, which 
poses significant challenges for clinical decision-making, 
interpretability, and trust. While AI has demonstrated 
promising results in detecting various cardiovascu-
lar conditions, the lack of transparency raises concerns 
about its reliability and application in evidence-based 
medicine. To overcome these challenges, there is a press-
ing need to develop explainable AI (XAI) techniques that 
provide clear insights into AI decision-making processes. 
These techniques, including model-based and post hoc 
explanations, can bridge the gap between complex AI 
models and the need for transparency in clinical settings.

Moreover, comprehensive education and training pro-
grams for healthcare professionals are essential to ensure 
the effective and responsible use of AI in practice. These 
programs should equip clinicians with the knowledge and 
skills to understand and apply AI tools while addressing 
the ethical implications of their use. Additionally, patient 
involvement and informed consent must be prioritized to 
maintain autonomy and trust in AI-driven healthcare.

Finally, establishing robust ethical and regulatory 
frameworks is crucial for the safe and effective integra-
tion of AI in clinical workflows. By addressing these chal-
lenges, we can ensure that AI technologies are deployed 
responsibly, ultimately enhancing patient outcomes and 
transforming cardiovascular care.
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