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Abstract

utilized to train a CNN to classify chest radiographs.

performance was compared to previous studies.

traditionally developed neural network model.

Background: Widespread implementation of machine learning models in diagnostic imaging is restricted by dearth
of expertise and resources. General purpose automated machine learning offers a possible solution.
This study aims to provide a proof of concept that a general purpose automated machine learning platform can be

In a retrospective study, more than 2000 postero-anterior chest radiographs were assessed for quality, contrast,
position, and pathology. A selected dataset of 637 radiographs were used to train a CNN using reinforcement
learning based automated machine learning platform. Accuracy metrics of each label was calculated and model

Results: The auPRC (area under precision-recall curve) was 0.616. The model achieved precision of 70.8% and recall
of 60.7% (P > 0.05) for detection of “Normal” radiographs. Detection of “Pathology” by the model had a precision of
75.6% and recall of 75.6% (P > 0.05). The F1 scores were 0.65 and 0.75 respectively.

Conclusion: Automated machine learning platforms may provide viable alternatives to developing custom CNN
models for classification of chest radiographs. However, the accuracy achieved is lower than a comparable
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Machine learning [G17.035.250.500], Cloud computing [L01.224.097], Deep learning [G17.035.250.500.250]

Background
Current scenario
Until recently, the approach to develop a CAD system to
extract meaningful features and infer a diagnosis was
based heavily on Rule Based algorithms [1]. These were
hand crafted sets of definitions, which were used by the
computing system to detect abnormalities. The levels of
accuracy achieved by these systems were poor and
remained an enhanced visualization function rather than
an independent diagnostic tool [1].

Advances in Deep Learning algorithms have since sur-
passed the traditional Rule Based algorithms in accuracy
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[2]. Multiple Deep Learning algorithms have even been
able to surpass human performance in sorting natural
images [3, 4]. This has also led to interest in applying
Deep Learning algorithms to diagnostic imaging and
multiple studies have been done on application of Deep
Learning on the interpretation of Chest radiographs. Lit-
jens et al. produced an extensive survey of deep learning
studies done on medical image datasets. It recorded 12
studies which had been undertaken till then, on applica-
tion of deep learning techniques to chest radiographs to
aid diagnosis [5].

Related works
The first published attempt at applying machine learning
to this problem was by Lo et al. They designed a two-
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layered convolutional neural network (CNN) to identify
true pulmonary nodules on chest radiographs. The
model was trained to differentiate between true nodules
and end on vessels or rib overlap artifacts mimicking
pulmonary nodules [6].

Anavi et al. created an image retrieval system that
would rank the dataset images according to similarity
with the query image. The model was created as a com-
bination of pre-trained CNN with a support vector ma-
chine (SVM). The classification-based model was able to
achieve a recall (recall of only top 30 images were re-
ported) of 0.310 for left side pleural effusion, 0.182 for
left side consolidation, and 0.103 for identification of a
healthy chest [7, 8].

Multiple studies also focused on using CNN models
which were previously trained with natural images, ap-
plying them to classification of chest x-rays in an at-
tempt to reduce the complexity, cost, and time required.
Bar et al. in a unique experiment used a pre-trained
CNN and low level features to successfully detect lung
pathologies. The Sensitivity of the model ranged from
0.80 to 0.89 and the specificity ranged from 0.79 to 0.87
[9, 10]. Cicero et al. trained and validated a GoogLe Net
CNN model on a large data set of over 30,000 frontal
chest radiographs to detect common lung pathologies.
They were able to achieve a ROC AUC of 0.964 with a
sensitivity and specificity of 91% for identification of
Normal chest [11]. They also achieved a remarkable level
of accuracy with AUC ranging from 0.850 to 0.962 for
detection of common lung pathologies, with a sensitivity
of 74 to 91% and specificity of 75 to 91% [11]. Hwang
et al. designed a pre-trained fine-tuned 6 layered CNN
which was able to process complete chest radiographs
and was trained to detect pulmonary tuberculosis. The
average ROC AUC of the model without transfer learn-
ing was 0.816 and with transfer learning it improved to
0.964 [12]. Wang et al. used a ImageNet pre-trained
CNN along with hand crafted feature selection to iden-
tify pulmonary nodules on chest radiographs. They were
able to achieve a sensitivity of 69.27% and specificity of
97.02% [13].

Some studies have attempted to overcome the expo-
nential rise in algorithm complexity that accompanies
the quest for greater accuracy by deploying multiple syn-
ergistically working trained machine learning models.
Shin et al. produced a highly sophisticated model with a
CNN predicting the lung pathology and a Recurrent
Neural Tensor Network providing short captions for an-
notation. The model was trained on a large dataset of
7000 images [14]. Islam et al. trained and tested multiple
deep learning models to detect lung pathologies on
frontal chest radiographs. Their experiments proved that
different models excelled at single specific pathology de-
tection and using ensembles of models improved the
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overall performance [1]. Wang et al. created the first
standardized public dataset of chest radiographs to de-
velop a benchmark against which all deep network per-
formances could be assessed [15]. It also tested several
different standard CNN models against the dataset. The
average ROC AUC for the best performing model was
0.738. Yao et al. developed a novel method to leverage
associations of different lung pathologies to improve de-
tection accuracy in their model. The model outper-
formed Wang et al. with an average ROC AUC of 0.798
[16]. Rajpurkar et al. developed CheXNet, a 121 layered
CNN which was trained on Chest X ray -14 public data-
set for detection of signs of pneumonia on chest radio-
graphs [17]. The model outperformed the published
results of both Wang et al. and Yao et al. on all listed
pathologies of the dataset. Lakhani and Sundaram
trained an ensemble of GoogLeNet and AlexNet DCNNs
to detect pulmonary tuberculosis. They achieved an im-
pressive ROC AUC of 0.99 with a sensitivity of 97.3%
and specificity of 100% [18].

There has been simultaneous development in Deep
Neural Network models that aid in other challenging as-
pects of chest radiograph interpretation. Kim and
Hwang developed an ML framework to detect tubercu-
losis by projecting heat maps on the suspicious areas of
chest radiographs [19]. Rajkomar et al. created a pre-
trained DCNN model to sort chest radiographs into an-
teroposterior and lateral views [20]. Yang et al. used a
cascading set of CNNs to detect and suppress bone from
standard chest radiographs to render clear view of the
pulmonary and cardiac soft tissue shadow [21].

Problem statement

While the potential of neural networks to change the
diagnostic imaging is clear, the real world application of
such research remains greatly hindered due to the pro-
hibitive cost of running multiple graphics processing
units (GPUs) to train such neural networks. While the
cost of such technology is reducing, it still remains in
the range of $100,000 [2]. An additional obstacle for
accessing and applying machine learning techniques in
radiology is the lack of expertise and knowledge required
for hyperparameter tuning, data augmentation, etc. It
also remains a time-consuming process as the complex-
ity of the machine learning model increases combinator-
ially and requires considerable experimentation even by
those with machine learning expertise. Recent advances
have attempted to automate the designing process of
machine learning models by evolutionary algorithms and
reinforcement learning algorithms [22, 23]. Multiple
proprietary Application Programming Interfaces (APIs)
for automated machine learning based on reinforcement
learning are now available. These offer the ability to ac-
cess and train a neural network for a fractional cost and
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time to that of traditional machine learning models. This
is critical for democratizing the access to machine learn-
ing and universalizing the use of this technology. It is es-
pecially important considering the potential beneficial
outcomes of such research—reducing cost of diagnostic
imaging, streamlining work flows, and enabling greater
penetration of diagnostic imaging to the community
level—are most required in resource limited developing
communities.

This pilot study was aimed to provide a proof of con-
cept that general purpose automated machine learning
platforms such as Google AutoML Vision can be utilized
to train a neural network to diagnose and categorize
chest radiographs in a real-world setting.

Methods

Dataset creation

A pool of over 2000 postero-anterior view chest radio-
graphs from the out-patient and in-patient department
acquired on different computed radiography and digital
radiography systems were assessed for quality, level of
penetration, positioning, and contrast. Those with very
poor quality, low contrast, and unsatisfactory positioning
were rejected. However, chest radiographs with minor
imperfections in breath-holding, positioning or contrast,
deemed reportable by the radiologist were included.
Chest radiographs with clothing, jewelry, and implant-
able medical devices artifacts were included to mirror
real-world variations.

14

Fig. 2 Distribution of conspicuousness of pathology in the training data set
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Fig. 3 Precision-recall tradeoff graphs for classification of “Normal” (@) and “Pathology” (b)

Image processing

The resultant dataset of 637 images were then converted
from proprietary file types into Joint Photographic Ex-
pert Group file type with a 1024 x 1024 matrix size with
96 dpi vertical and horizontal resolution encoded using
baseline DCT Huffman coding. The bit depth (bits per
sampling) was set at 8bits with a Chroma subsampling
Y'CbCr=4:2:0. The dataset was de-identified and was
compliant with the Health Insurance Portability and Ac-
countability Act. No data augmentation procedures were
performed.

Model implementation

The dataset was uploaded onto Google Cloud Platform
(Google LLC, Menlo Park, CA, USA) and processed
using Cloud AutoML Vision Beta (release date: July 24,

Table 1 Accuracy metrics

Label Number of images Precision Recall
Normal 305 70.8% 60.7%
Pathology 332 75.6% 75.6%
Artifact 303 553% 63.6%
Cardiomegaly 43 100% 0%
Collapse 21 100% 0%
Consolidation 84 100% 0%
Costophrenic_Angle_Blunted 31 100% 0%
Fibrosis 61 100% 0%
Hilar_Prominence 42 100% 0%
Midinspiratory 43 100% 0%
Nodular_Opacities 39 100% 0%
Other_Pathology 37 100% 0%
Pleural_Effusion 56 100% 0%
Prominent_BV_Markings 27 100% 0%
Rotated 165 33.3% 5.9%

2018). Multiple labels were created for classifying differ-
ent pathologies and image characteristics (Fig. 1). Each
image was labeled with one or more labels using Vision
UI running on Chrome v68.0.3440 (Google LLC, Menlo
Park, CA, USA). The dataset was randomly subdivided
with 80% of the images under each category allocated to
the training set and 10% each to the validation and test-
ing sets. The system used had Intel Core i3 — 4005U
1.70 GHz chipset (Intel, Santa Clara, CA, USA), 4.00 Gb
RAM, 512 Gb hard disk space, integrated Intel HD
Graphics 4400 (Intel, Santa Clara, CA, USA) with Win-
dows 7 Ultimate Operating System (Microsoft Corpor-
ation, Redmond, WA, USA).

Statistical analysis was performed with the in-built
metrics projection in Vision API, Google Sheets (Google
LLC, Menlo Park, CA, USA) and MedCalc (MedCalc
Software Ltd, Ostend, Belgium).

Results

Dataset characteristics

The dataset contained 637 postero-anterior view chest
radiographs of which 332 had some pathology (52.1%).
The dataset had a mild male predominance (57.8%) with
an average age of 26.5 years. Each image assessed sub-
jectively for quality and marked either satisfactory or
poor. 82.1% of the images were of satisfactory quality
but the dataset also contained 17.9% radiographs which
were poor in quality but still deemed reportable by the
radiologist. 47.6% of the dataset contained some form of
artifact from clothing, jewelry, or implantable devices
like pacemakers. The images were also assessed for posi-
tioning of the subject and revealed 25.9% to have some
degree of rotation—which could lead to certain
artifactual findings such as apparent cardiomegaly and
prominence of the hila. Forty-three of the 637 radio-
graphs were found to have been acquired in mid-
inspiration. These imperfect images were introduced
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Table 2 Evaluation of model performance in detecting “Normal” chest radiographs

Normal
Classified as “Normal” 185 (true positive)

Not classified as “Normal” 120 (false negative)

Total 305
Statistics Value
Sensitivity 60.66%
Specificity 77.11%
Positive likelihood ratio 265
Negative likelihood ratio 0.51
Positive predictive value 70.88%
Negative predictive value 68.09%
Accuracy 69.23%

Not normal Total
76 (false positive) 261
256 (true negative) 376

332

95% confidence interval
54.93 to 66.17%

72.21 to0 81.52%

21310 3.29

044 to 0.59

66.21 to 75.15%

64.71 to 71.28%

65.48 to 72.80%

into the dataset to reduce overfitting of the model to the
training set and improve its real world applicability.

The images with pathology were sub-classified and la-
beled into 9 different categories (Fig. 2). The pathologies
were also assessed for subjective conspicuity. Each lung
field was divided into three lung zone: upper, middle,
and lower. A pathology occupying more than or equal to
half of a zone was deemed “Apparent.” If the pathology
occupied less than half but more than 25% of the lung
zone, it was marked as “Conspicuous.” Lesions occupy-
ing less than 25% of a lung zone were termed “Subtle.”
The distributions of the lesions are shown in Fig. 2.

Accuracy metrics

The precision (positive predictive value) for all labels
was 65.7% with a recall (sensitivity) of 40.1%. The auPRC
(area under precision-recall curve or average precision)
of the model was 0.616 (Fig. 3). The precision and recall
for each category is summarized in Table 1. The F1
Score for classification was 0.65 for “Normal” category
and 0.75 for “Pathology” category. Further evaluation

statistics for both categories are summarized in Tables 2
and 3, respectively.

Discussion

Unmet needs

While there has been considerable interest in the appli-
cation of convolutional neural networks and other forms
of machine learning for classification of chest radio-
graphs into various pathologies, the underlying technol-
ogy utilized in all these studies remain exclusionary [5,
24-26]. These studies either constructed and trained
machine learning models de novo or worked with pre-
trained CNNs like AlexNet and GoogLleNet [3, 27].
Though these methods yielded high accuracy models
which could classify chest pathologies, they were built
on systems which required high level of expertise as well
as prohibitively costly infrastructure. This has led to a
data-algorithm divide. The predictive accuracy of an al-
gorithm is strictly contingent on the dataset that it is
trained on (Fig. 4). But a large number of institutions in
resource-limited settings may not have access to

Table 3 Evaluation of model performance in detecting “Pathology” chest radiographs

Pathology
Classified as “Pathology” 251 (true positive)

Not classified as “Pathology” 81 (false negative)

Total 332
Statistics Value
Sensitivity 75.60%
Specificity 73.44%
Positive likelihood ratio 2.85
Negative likelihood ratio 033
Positive predictive value 75.60%
Negative predictive value 73.44%
Accuracy 74.57%

Not pathology Total
81 (false positive) 332
224 (true negative) 305

305

95% confidence interval
70.62 to 80.13%

68.11 to 7831%

2.34 to 346

0.27 to 041

71.80 to 79.04%

69.34 to 77.18%

71.00 to 77.91%
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Fig. 4 Examples from the training data set. Right-sided pleural effusion (a). Fibrosis in left upper zone (b). Consolidation in bilateral lung fields (c).
Multiple pathologies in single radiograph—showing patchy consolidation with fibrotic bands and bulla in left upper zone (d). Cardiomegaly (e).
Left hilar prominence (f). Prominent bronchovascular markings (g). Emphysema (h). Blunted left costophrenic angle with patchy consolidation ().
Collapse of left upper and middle zone (j). Nodular opacities in right lower zone (k). Normal chest radiograph with clothing artifact (1)

machine learning technology but do have access to large
volumes of data.

Proposed solution

In this study, we tried to explore the possibility of repur-
posing general purpose automated machine learning
models to classify diagnostic images, in particular chest
radiographs. The platform used was Cloud AutoML Vi-
sion, which circumvents the challenges of requiring a
large amount of time and expertise in crafting a neural
network by using reinforcement learning [23]. The “con-
troller” recurrent network creates variable length strings.
These strings act as templates for development of “child”
convolutional neural networks. These “child” networks
are trained on the dataset and subsequently evaluated
for accuracy. The accuracy metric is used as a positive
reinforcement for the “controller” network. Thus in the
subsequent iteration, the “child” networks with higher
accuracy are favored. This is repeated until a single best
“child” network is achieved with the highest accuracy.

Model accuracy

The accuracy metric of our trained model was expect-
edly lower than dedicated CNNs. The model had very
poor sensitivity for sub-classification of pathology. How-
ever, the overall accuracy achieved for detection of path-
ology in chest radiographs was 74.57%. The accuracy
parameters of the model are compared with two studies
conducted with comparable machine learning models in
Table 4.

Our model, DeepDx, was able to achieve compar-
able accuracy to the model used by Bar et al., even
surpassing their precision rate by almost 25%. This is
substantial progress, especially when viewed in the

context of the highly specialized fusion model (two
separate deep learning baseline descriptors used along
with GIST descriptor) created by Bar et al. [10]. The
comparison table also reveals that Cicero et al. in
their study achieved a much higher overall accuracy,
but the success could be attributed at least in part to
the large dataset on which their model was trained
[11].

Justification

In our model, the three categories with examples
above the minimum recommended number did pro-
vide good accuracy and with targeted increase in the
dataset in subsequent iterations the overall model ac-
curacy is likely to improve further. As per documen-
tation released with Cloud AutoML Vision (Google
LLC, Menlo Park, CA, USA), which we utilized in the
study, the minimum recommended examples per label
is 100 and approximately 1000 examples are advised
for accurate prediction. This may not always be feas-
ible for medical imaging, as rarity is often a feature
of diseases with serious implications; and the time re-
quired to accrue enough examples may impede pro-
gress. This problem is usually circumvented by data
augmentation procedures. Application of techniques
such as horizontal flipping, cropping, rotation, and
padding on chest radiographs and their effect on

Table 4 Comparison of accuracy metrics

Dataset Precision Recall Specificity
DeepDx 637 75.60% 75.60% 73.44%
Bar et al. 443 51.25% 84.00% 78.00%
Cicero et al. 38101 90.00% 91.00% 91.00%
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Fig. 5 a False positive—the algorithm misinterpreted the artifact as nodular opacity. b False negative—the algorithm failed to identify the pleural

model accuracy has not been investigated. It may not
be prudent to shoehorn techniques, while efficacious
in other image datasets, onto diagnostic images. For
example, horizontal flipping of a chest radiograph
may create false-positive results for detection of car-
diomegaly and may in fact reduce accuracy. The
model may also fail to flag cases of dextrocardia.
Similarly, training machine learning models on ro-
tated radiographs may lead to the algorithms assign-
ing undue importance to irrelevant components of
the image. Also many disease processes are defined
by their orientation like cephalization of vessels in
CCF, which may be lost during the augmentation
process.

Accuracy of the model is also likely to gain from
changing the labeling structure of the dataset. In our
study, we trained the algorithm to diagnose “Normal”
and “Pathology” not as a binary alternative but as dis-
tinct classification categories. This was done keeping
in mind real world application, as many radiographs
do not distinctly fit either into an apparently normal
or disease category. Many radiographs have suspicious
features which should not be classified as disease and
may require consensus reporting by radiologists. An-
other advantage of detecting the two categories separ-
ately was that it gave us comparable statistics with a
larger number of studies, as most have trained to
classify either one of the categories. The downside of
this labeling structure was that it added to the com-
plexity and thus probably reduced accuracy of the
model. The model can be trained, in further studies;
to detect only “Pathology” and the “Normal” can be
processed as a default class. The sensitivity of the
“Pathology” label should be increased to commit false
positives and catch the indeterminate cases rather
than being labeled “Normal” (Fig. 5). This will again
entail human intervention to sort through and weed
out the false positive, but will improve accuracy.

Reflections

The study has highlighted certain definite advantages of
using automated machine learning in developing diag-
nostic classification models. The method reduces infra-
structure requirements and cost to a fractional amount.
The ease of use, with GUISs, also enables implementation
and fine tuning without cumbersome coding languages.
The reinforcement-based learning model greatly reduces
the time requirement for developing complex CNN
architecture. And importantly, such platforms provide
scalability to improve upon a model and add further
complexity to the classifier.

Future implications

Further work needs to be done with larger datasets of
diagnostic images, to ascertain the maximal overall ac-
curacy achievable. Multiple platforms now exist provid-
ing similar tools and they should be evaluated in a
controlled trial for unbiased comparison. Data augmen-
tation procedures should also be validated for use with
medical imaging, particularly radiological images. Lastly,
most studies attempting to classify chest radiographs
have dealt with post-processed compressed images con-
verted to non-native file types such as JPEG and PNG
[11, 12, 17, 18]. This conversion may lead to loss of im-
portant image characteristics and attempts should be
made to use DICOM file types for future training of
algorithms.

Conclusion

Computer vision is revolutionizing the field of diagnostic
imaging. But its resource-intensive nature may preclude
its wider implementation and acceptance. This study
presented an alternative to the traditional machine
learning infrastructure and aimed to investigate the use
of commercially available general purpose cloud-based
automated machine learning for detection of pathologies
on standard postero-anterior chest radiographs.
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The study found automated machine learning to be a
viable alternative to human designed diagnostic convolu-
tional neural networks. The accuracy of the model devel-
oped was conservative in comparison to standard deep
learning models. However, restructuring of the classifiers
and increasing the training dataset hold promise of
achieving greater accuracy. Further multi-platform stud-
ies are required with larger datasets to fully explore its
potential.

While machine learning promises of vast improve-
ments in speed and accuracy in detection of pathologies
across imaging modalities, greater research focus needs
to be directed towards ensuring that this novel technol-
ogy is used to bridge the health-wealth gap and not
widen it.
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