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Abstract

Background: This study aimed to propose an automatic prediction of COVID-19 disease using chest CT images
based on deep transfer learning models and machine learning (ML) algorithms.

Results: The dataset consisted of 5480 samples in two classes, including 2740 CT chest images of patients with
confirmed COVID-19 and 2740 images of suspected cases was assessed. The DenseNet201 model has obtained the
highest training with an accuracy of 100%. In combining pre-trained models with ML algorithms, the DenseNet201
model and KNN algorithm have received the best performance with an accuracy of 100%. Created map by t-SNE in
the DenseNet201 model showed not any points clustered with the wrong class.

Conclusions: The mentioned models can be used in remote places, in low- and middle-income countries, and
laboratory equipment with limited resources to overcome a shortage of radiologists.
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Background
Infectious pathogenic microorganisms, such as viruses,
cause diseases. These diseases are one of the critical
agents that threaten human health, for they are deadly
acute diseases and infectious and can be spread from
one person to another [1]. The spread of coronavirus
(COVID-19) has been a great global concern because of
threatening the people’s health [2], and there is no ef-
fective treatment to cure the disease [3]. In December
2019, pandemic COVID-19 appeared in Wuhan, China.
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) caused the COVID-19 pandemic disease [4].
After the incubation period of about 2-14 days, the clin-
ical presentation of COVID-19 begins, including fever,

cough, and shortness of breath [5]. Because of the incu-
bation period, COVID-19 can be spread even by asymp-
tomatic persons. The World Health Organization
(WHO) has suggested physical distancing and contact
tracing in controlling the spread of COVID-19 [6]. An
essential step in this process is the efficient and accurate
detection of the COVID-19 patients, in which due to
prevent spreading the virus, patients receive rapid treat-
ment and become isolated. Various tests for diagnosing
COVID-19 disease are available. These tests include re-
verse transcription-polymerase chain reaction (RT-PCR),
loop-mediated isothermal amplification (LAMP), lateral
flow assays (LFAs), enzyme-linked immunosorbent assay
(ELISA), and computed tomography (CT) scan [7]. RT–
PCR is a gold standard test and one of the most widely
used laboratory techniques to detect the COVID-19 [8,
9]. However, screening every person affected by the virus
in developing countries, with lack of laboratory equip-
ment, is challenging. Furthermore, taking tests longs a
few hours to a few days and it is time-consuming, and
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error-prone in the current emergency. Moreover, RT-
PCR has a low sensitivity, and false-positive results have
been reported [10]. Therefore, to prevent and to control
COVID-19, a faster and reliable detecting modality is
recommended. CT images are widely used for COVID-
19 screening less developed countries, where an available
number of test kits are low. Some studies have shown
that a chest CT scan helps physicians assess and
optimize prevention and control measures [11–13].
Therefore, the screening of CT images can be used as an
alternative to laboratory tests. However, there is a lim-
ited number of radiologists in every hospital to interpret
CT images. Therefore, an accurate and fast method is
required to overcome this problem. Moreover, CT im-
ages provide quantitative information, but only qualita-
tive information is reported due to the lack of
computerized tools to process [14]. Image processing is
a technique to extract useful information from an image.
Recently, the deep learning model is preferred for quan-
titative image analysis [15, 16]. Deep learning diagnoses
the disease and prepares suitable prediction models to
assist doctors in developing effective treatment plans.
Therefore, the automatic and quantitative analysis of CT
images can be done through deep learning-based ap-
proaches [17–19]. One of these approaches is transfer
learning, which is a sub-branch of deep learning. Trans-
fer learning improves learning in a new task through the
transfer of knowledge from a related task that has
already been learned [20–22].
Machine learning (ML) and deep transfer learning

methods increase the ability of researchers to sense how
to analyze the common variations which will lead to dis-
ease [23]. These methods comprise conventional algo-
rithms such as support vector machines (SVMs),
decision tree (DT), random forest (RF), logistic regres-
sion (LGR), and k-nearest neighbors (KNN) [24], and
deep learning algorithms like convolutional neural net-
works (CNNs). The SVM is a classification method that
transforms a training dataset to a higher dimension. To
separate the two classes with minimum classification er-
rors, it optimizes a hyperplane [25]. The DT creates a
tree-structured model to define the relationships be-
tween features and a class label [26]. The RF is a DT en-
semble algorithm that through a re-sampling process
called bootstrap aggregation creates multiple trees [27].
LGR models are the probability of data points belonging
to a particular class according to independent features’
value. It then uses this model for predicting that a given
data point belongs to a particular class [28]. The KNN is
a classifier that trains by comparing a certain unlabeled
data point with the training dataset [29]. CNN has
shared weights and replicated filters on each layer with
local connectivity without manual feature extraction.
There are two types of layers, including feature

extractors and trainable classifier [30]. There are differ-
ent types of CNN architecture, including ResNet, Dense-
Net, VGGNet, InceptionV3, MobileNet, and EfficientNet
[31]. The employed models’ core structure is explained
in the “CNNs and proposed deep transfer learning
models” subsection.
Although the RT–PCR test is the gold standard for

screening suspected cases of COVID-19, this test is time-
consuming and has false-positive results and insufficient
sensitivity. Therefore, an automated method for diagnos-
ing COVID-19 in chest CT images is required. The auto-
matic analysis of CT images with CNN models has started
to get further interest. These analyses can be done
through deep transfer learning and ML methods so that
they can accelerate the analysis time. In the deep transfer
learning method, networks’ weights can train on large
datasets and apply fine-tuning of the pre-trained models
on small datasets. As it comes to our knowledge from the
literature review, there are no any records for investigating
extensively deep transfer learning and ML methods to
recognize infected COVID-19 patients by chest CT im-
ages. Thus, in this study, the inductive transfer learning
for the pre-trained CNN models, DenseNet201, ResNet50,
VGG16, and Xception, was used to differentiate COVID-
19 patients suspected. These models are considered
among the most popular pre-trained CNN architectures
used in the literature based on the recent survey by Khan
et al. [32]. We aimed to investigate these classifiers to gain
the maximum feasible accuracy on the COVID-19 diagno-
sis task independently from the chosen CNN architecture.
We used the pre-trained weights on the ImageNet dataset
as a start point for all models. Training this dataset helps
the model to better general apparent patterns that are in
image data. Using pre-trained weights on ImageNet for
training small datasets helps the model to converge faster
and easier.
The current study was conducted in two sections.

In the first section, the output of pre-trained models
was applied to differentiate COVID-19 patients from
suspected. In the second section, ML methods, in-
cluding RF, SVM, DT, KNN, and LGR, were used to
classify patients. In this manner, the pre-trained
methods’ output without any feature selection was ap-
plied as the input to the ML algorithms. The combin-
ation of different pre-trained models with ML
algorithms was compared with the classification deep
transfer learning models’ performance. Hence, exten-
sive comparative analyses were performed to evaluate
the models’ performance using various performance
metrics such as accuracy, recall, precision, and f1-
score statistics. This study briefly aimed to have pro-
posed an automatic prediction of COVID-19 disease
using chest CT images based on deep transfer learn-
ing models and ML algorithms.
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Methods
Data set and data acquisition
The dataset consisted of 5480 samples in two classes, in-
cluding 2740 CT chest images of patients with con-
firmed COVID-19 and 2740 images of suspected cases.
In the experimental analysis, 4400 images of the dataset
were used as training data, and 1080 images as test data.
It is necessary to mention that slices of each person were
not divided between both training and test sets. The
current study was carried out between 28 April 2020,
and 3 September 2020. To manage COVID-19, all pa-
tients with a rapid respiratory rate over 30 per minute,
fever over 37.8 °C, hypoxemia, dyspnea, cardiovascular
disease, hypertension, diabetes mellitus, underlying pul-
monary diseases, and immunodeficiency underwent
non-contrast chest CT examinations. In our center, all
patients must perform the PCR test and CT imaging to
clarify COVID-19. A physician for screening and diag-
nosing COVID-19 reviewed medical records and im-
aging. All patients, both clinical findings and chest CT
findings compatible with COVID-19 pneumonia, were
located in the confirmed COVID-19 group. CT scans
and laboratory tests confirmed that some patients had
other lung infections. These patients had some common
symptoms with confirmed COVID-19 patients. In these
patients, CT imaging’s initial diagnosis was difficult, so
additional laboratory tests were performed. That is why
we named them suspected COVID-19. Non-contrast CT
chest examinations were performed with a 16-slice CT
scanner (Somatom Emotion; Siemens Medical Solutions,
Forchheim, Germany) with the protocol as follows: kVp
= 110, mAs = 90, slice thickness = 2 mm, matrix size =
512 × 512, voxel size = 0.714 mm, 0.714 mm, 2 mm. In
Fig. 1, chest CT images of patients with suspected
COVID-19 and confirmed are represented. The graph-
ical abstract of the study is displayed in Fig. 2.

CNNs and proposed deep transfer learning models
CNN is a class of deep learning models of data process-
ing and analysis, which is an inspired design by the

structure of the human visual cortex [33]. CNN is de-
signed to learn spatial hierarchies of features through a
backpropagation algorithm, from low- to high-level pat-
terns. The CNN typical architecture includes repetitions
of a stack of multiple convolution layers and pooling
layers followed by one or more fully connected layers
[34]. The convolution layer is an essential layer of the
CNN model composed of several convolution kernels
based on moving the input image with the selected filter
to extract different feature maps. The size and number
of kernels are two key hyperparameters that define the
convolution operation. The size is typically 3 × 3, but
sometimes are 5 × 5 or 7 × 7. The number of kernels is
arbitrary and specifies the depth of output feature maps.
In general, in the convolution layer, each of the output
feature maps can be combined with more than one input
feature map as follows:

xlj ¼ f
X
i€Mj

xl−1j �klij þ blj

 !
ð1Þ

Where the output of the current layer is xlj , x
l−1
j is the

previous layer output, klij is the kernel for the present

layer, and blj are the biases for the current layer. Mj rep-

resents a selection of input maps. The outputs of convo-
lution are then passed per a nonlinear activation
function. Rectified linear unit (ReLU) is the most com-
mon nonlinear activation utilized as an activation func-
tion [35]. It can be defined as:

F xð Þ ¼ max 0; xð Þ ð2Þ
ReLU does by thresholding values at 0. When x < 0, it

outputs 0, and conversely, when x ≥ 0, it outputs a linear
function.
A pooling layer enables a specific down-sampling ac-

tion, which reduces the feature maps dimension, the
number of subsequent learnable parameters, and costs.
It is necessary to mention that in any of the pooling
layers, there is no learnable parameter. Therefore,

Fig. 1 Sample of CT images from patients with suspected COVID-19 (a) and confirmed (b)
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hyperparameters in pooling operations are similar to
convolution operations. The most common type of pool-
ing operation is max pooling, which extracts the max-
imum value in the input maps, and discards all the other
values. The global average pooling is another pooling
operation. In this pooling, a powerful method of down-
sampling is performed with retaining the depth of fea-
ture maps. A feature map is downsampled into a 1 × 1
array using the average of all the elements. The global
average pooling is applied before the fully connected
layers [36]. Pooling operation can be formulated as:

xlj ¼ down xl−1j
� �

ð3Þ

Where down (.) represents a sub-sampling function.
The output feature maps of the final convolution layer

are typically transformed into a single vector, and the
neurons are connected to all the activation functions
from the previous layer. Each convolutional layer has a
filter (m1). The output Yl

i of layer l consists of m
l
1 feature

map of with size ml
2 ×m

l
3. The ith feature map, Yl

i; is cal-
culated on the bases of Eq. 4:

Y 1ð Þ
i ¼ f B lð Þ

i þ
Xm l−1ð Þ
i

j¼1

k 1ð Þ
i; j � Y l−1ð Þ

j

0
@

1
A ð4Þ

Where Bl
i demonstrates the bias matrix and Kl

i; j the fil-

ter size.
The processing phases of the fully connected layer are

shown in Eq. 5, if (l −1) is a fully connected layer;

Y 1ð Þ
i ¼ f Z lð Þ

i

� �
with Z lð Þ

i ¼
Xm l−1ð Þ
i

j¼1

w 1ð Þ
i; j � Y l−1ð Þ

j Þ ð5Þ

Based on each task, an appropriate activation function
needs to be selected. A softmax function is an activation
function applied to the multiclass classification and the
values in two classes of “0” and “1” interpreted [37].
The DenseNet201, ResNet50, VGG16, and Xception

models are considered and described briefly in this sec-
tion [30]. DenseNet201 includes densely connected
CNN layers. In a dense block, the outputs of each layer
are associated with all successor layers. Put merely, Den-
seNet201 organized with dense connectivity between the
layers. The features extracted from the DenseNet201mo-
del is a 1920-dimensional space. ResNet50 is a usual
feedforward network with a residual connection contain-
ing 50 layers, 49 convolution layers, and one fully con-
nected layer. The features extracted from the ResNet50
model is a 2048-dimensional space. The image’s input
size is usually set to 224 × 224 pixels, and the size of the
filter can be selected to 3 ×3 or 5 ×5 pixels. The VGG16
architecture includes two convolutional layers such that
both use the ReLU activation function. Followed, a sin-
gle max-pooling layer and several fully connected layers
also use a ReLU activation function. In this model, the
convolution filter size is 3 × 3 filters with a stride of 2.
The features extracted from the VGG16 model is a 512-
dimensional space. Xception or Extreme Inception is a
linear stack of depth wise detachable convolution layers
with residual connections. In this model, except for the
first and last modules, the 36 convolutional layers are
structured into 14 modules. This architecture does not

Fig. 2 Graphical abstract
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evaluate spatial and depth-wise correlations simultan-
eously and deals with them independently. The features
extracted from the Xception model are a 2048-
dimensional space.

Machine learning methods
RF is a meta-learner that works by building many num-
bers of decision trees during the training process. The
RF method only needs to determine two parameters for
creating a prediction model, including the number of
classification trees desired and prediction variables. Sim-
ply put, to classify a dataset, a fixed number of random
predictive variables is used, and each of the samples of
the dataset is classified by several trees defined [38].
SVM is a method to make a decision border between
two classes that predicts labels using one or more fea-
ture vectors. The mentioned decision boundary is
known as the hyperplane, with a maximum margin sep-
arating negative and positive data [39]. The output of an
SVM classifier is given in Eq. 6, wherein w and x are the
normal vectors to the hyperplane and the input vector,
respectively.

u ¼ w!:x−b ð6Þ

Maximizing margins can be determined as an
optimization subject: minimize Eq. 7 concerning Eq. 8,
where xi is ith training sample, and yi is the correct out-
put of the SVM model for ith training.

1
2

w!�� ��2 ð7Þ

yi w!:xi
!
−b

� �
≥1; ∀i ð8Þ

DT algorithm is a data mining induction method that
recursively divisions a data set of records using the
greedy method until all the data items belong to a spe-
cific class. The structure of this model is created of a
root, internal, and leaf nodes. To classify new data re-
cords, the tree structure is used. At any internal node of
the tree, making decisions about the best split is made
by using impurity measures [40]. KNN classifier is a
nonparametric classifier that provides good performance
for optimal values of k. In the KNN rule, a test sample
belongs to the class mostly represented among the k-
nearest training samples, and classification is performed
by calculating the distance between the selected features
and the k-nearest neighbors [29]. The Euclidian distance
to determine the spaces among the features can be cal-
culated as follows: If two vectors xi and xj are given, the
difference between xi and xj is:

D xi; x j
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn¼1

k
xik−xjkð Þð Þ2

r
ð9Þ

LGR model is used when the value of the target vari-
able is categorical, or is either a 0 or 1. A threshold is
usually determined that demonstrated what value they
will be put into one class vs. the other class [28]. The lo-
gistic regression model as follows:

ð10Þ

Experimental setup
The inductive transfer learning for the pre-trained CNN
models, which are DenseNet201, ResNet50, VGG16, and
Xception, was used to differentiate COVID-19 patients
from suspected. In the inductive transfer learning
method, the target duty is different from the source
duty, no matter when the target and source domains are
the same or not. Therefore, for inducing an objective
predictive model fT (.) for use in the target domain,
some labeled data in the target domain are needed.
Based on “What to transfer,” there are different ap-
proaches to transfer learning that we used parameter
transfer. Parameter transfer assumes that the model’s
hyperparameters, the source, and target tasks share some
parameters or prior distributions. Therefore, by finding
the shared parameters or priors, knowledge can be
transferred through tasks. This study was conducted in
two sections. In the first section, the output of pre-
trained models was used to differentiate patients with
confirmed COVID-19 from suspected cases. Before
training, we resized all the images into 224-pixel width
and 224-pixel height in 3 channels for faster processing.
The used structure for the four models was the same:
the last convolutional block + model. Output + GlobalA-
veragePooling2D + Dropout (0.1) + Dense (256, activa-
tion= “ReLU”) + Dense (2, activation= “softmax”). It
should be noted that only the last four layers were
trained, and the rest of the pre-trained model layers
were frozen. Finally, the performance of these models
was obtained using four criteria as follows:

Accuracy ¼ TNþ TPð Þ= TNþ TPþ FNþ FPð Þ
ð11Þ

Recall ¼ TP= TPþ FNð Þ ð12Þ
Precision ¼ TP= TPþ FPð Þ ð13Þ
F1−Score ¼ 2� Precision� Recallð Þ= Precisionþ Recallð Þ

ð14Þ
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TP, FP, TN, and FN represent the number of true
positive, false positive, true negative, and false negative,
respectively. We used the dimensionality reduction
method “t-distributed stochastic neighbor embedding (t-
SNE)” to visualize high-dimensional data by giving each
data point in a two-dimensional map [41]. Therefore, t-
SNE aims to preserve the significant structure of the
high-dimensional data so that, put merely can be dis-
played in a scatterplot. t-SNE using a gradient descent
method minimizes a Kullback-Leibler divergence be-
tween a joint probability distribution in the high-
dimensional space and a joint probability distribution in
the low dimensional. The pairwise similarities in the
high-dimensional original data map as follows:

ð15Þ

With conditional probabilities:

ð16Þ

T-SNE has a tunable parameter, “perplexity,” which
declares how to balance regard between local and global
aspects of data. The perplexity is a guess of the number
of close neighbors at each point. The perplexity value
has a complex effect on the resulting image, and its
value tuned to 200 for presented t-SNE in our study. We
drew t-SNE plots for six different situations which in-
cluding original CT images, Conv2-layer10, Conv15-
layer56, GlobalAveragePooling layer, FC layer-layer 1,
and FC layer-layer 2.
In the second section, we used ML methods, which in-

clude RF, SVM, DT, KNN, and LGR, to classify patients.
In this manner, we entered the output of pre-trained
methods into ML algorithms and performed the ML al-
gorithms classification. The structure used to do this is
as follows: the last convolutional block + model. Output

+ GlobalAveragePooling2D + predict datasets+ ML algo-
rithms. The performance metrics of ML models were
obtained similarly to pre-trained models. The perform-
ance metrics of ML models was obtained as the same as
the pre-trained models.
All experiments, including data preprocessing and ana-

lysis, were performed on the Google Cloud computing
service “Google Colab” (colab.research.google.com) using
programming language Python and framework Tensor
Flow. We used the following parameters to compile pre-
trained models: optimizer= “Adam,” loss= “Categorical
Crossentropy.” For all experiments, the batch size, learn-
ing rate, and the number of epochs were experimentally
set to 64, 0.001, and 100, respectively.

Results
We used chest CT images for screening and diagnosing
COVID-19 disease. Popular pre-trained models such as
DenseNet201, ResNet50, VGG16, and Xception and the
combination of these pre-trained models with ML algo-
rithms, including RF, SVM, DT, KNN, and LGR, have
been trained and tested on chest CT images.

Deep transfer learning models analysis
The values of accuracy and loss for the pre-trained
models are given in Fig. 3. For all pre-trained models,
the training step has been carried out to the 100 epochs.
Also, a similar early stopping mechanism to the training
process was applied for all models so that if accuracy
and validation accuracy reached the value of one, the en-
tire learning was stopped. As shown in Fig. 3, for the
DenseNet201 model, the learning was stopped at the
47th epoch by the early stopping criteria. It can be seen
that the highest training accuracy was obtained with the
DenseNet201 model and then have other models show a
fast-training process. ResNet50, Xception, and VGG16
models have almost the same function. In four pre-
trained models during the training step, loss values

Fig. 3 The values of accuracy and loss for the pre-trained models
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decrease. As shown, the DenseNet201 model decreases
loss values faster than other models.
To visualize data in a two-dimensional map, we used

the dimensionality reduction method t-SNE, that data
was displayed in a scatterplot. We drew t-SNE plots for
six different situations: original CT images, Conv2-
layer10, Conv15-layer52, GlobalAveragePooling layer,
FC layer-layer 1, and FC layer-layer 3. Figure 4 shows
the created map by t-SNE in the DenseNet201 model,
and in this model, not any points were clustered with
the wrong class. These results reveal the strong perform-
ance of the t-SNE method.
In another detailed review, comparing four pre-trained

models using the test data are presented in Table 1, and
Fig. 5. As shown, the DenseNet201 model has obtained
the highest training as the accuracy of 100%. Further-
more, we received the best performance as a recall of
100%, Precision 100%, and f1-score value of 100% for
the DenseNet201 pre-trained model. However, the low-
est performance values were yielded,98.42%, for parame-
ters the accuracy, recall, precision, and f1-score value for
the Xception pre-trained model.
In Figs. 5 and 6, confusion matrix and receiver operat-

ing characteristic curve (ROC) plots of the models are
given, respectively. With the help of the confusion
matrix, the impact of FP and FN rates in models’ per-
formance is shown. It clearly indicates that the Dense-
Net201 model provides not any FP and FN rates.
However, the ResNet50, Xception, and VGG 16 models
also classified 5, 4, and 3 cases, respectively, as FP. They

belonged to the suspected COVID-19 group, but the
models mistakenly placed them in the confirmed
COVID-19 group. The ResNet50, Xception, and VGG
16 models classified 5, 13, and 2 cases, respectively, as
FN. They belonged to the confirmed COVID-19 group,
but the models mistakenly placed them in the suspected
COVID-19 group. As a result, the DenseNet201 pre-
trained model provides superiority over the other
models in recognizing COVID-19-infected patients by
chest CT images.

An analysis of combining the pre-trained models with the
ML methods
The combination of pre-trained models with ML algo-
rithms, including RF, SVM, DT, KNN, and LGR, are pre-
sented in Table 2 Similar to the pre-trained model
results, the highest training performance metrics were
obtained with the DenseNet201 model. The Dense-
Net201 model and KNN algorithm have received the
best performance as the accuracy of 100%, recall of
100%, the precision of 100%, and f1-score of 100%. Re-
sults showed that the KNN classifier, in combination
with pre-trained models, has a strong performance. As
shown, ResNet50, Xception, and VGG16 models, com-
bined with the KNN classifier, have almost the same and
high performance compared to other classifiers. The
lowest performance values were yielded as an accuracy
of 85%, recall of 85%, precision of 85.10%, and f1-score
of 84.98% for the Xception model and DT classifier. As
a result, the KNN classifier for screening and diagnosing

Fig. 4 Data visualizations with the t-SNE method for the DenseNet201 model
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COVID-19 disease provides superiority over the other
ML classifiers. Figure 7 depicts the AUC of the pre-
trained models in combination with ML classifiers. The
model DenseNet201+KNN classifier achieved the high-
est AUC (AUC, 100), followed by ResNet50 +KNN clas-
sifier and VGG16 +KNN classifier (AUC, 99.81).

Discussion
The new coronavirus (COVID-19) spread has been of
great concern to the global community because it
threatens the health of billions of humans, and there
is no effective treatment to cure the disease. The
early diagnosis of COVID-19 has been made possible

with rapid and accurate image processing methods re-
garding the computation approaches. In this field,
deep transfer learning models have a tremendous ad-
vantage in giving faster and better outcomes. Deep
transfer learning techniques are widely used in the
automatic analysis of medical images. These tech-
niques can train the weights of networks on large
datasets and fine-tuning the weights of these networks
on small datasets. Due to the small COVID-19 data-
set available, we used the DenseNet201, ResNet50,
VGG16, and Xception models for fine-tuning these
networks’ weights on the data set. Recent studies
identified that ML algorithms could be applied to dis-
cover patients’ subgroups and for clinical decision
guidance. In the current study, to classify patients, we
used ML methods, including RF, SVM, DT, KNN,
and LGR, in combination with pre-trained models.
Nowadays, machine and deep learning techniques
have developed as veritable methods to improve tech-
nologies across all domains and applications, includ-
ing disease diagnosis and treatment. In this study, for
helping the battle against COVID-19 disease, deep
transfer learning models and ML algorithms were
proposed to predict COVID-19 disease using chest
CT images automatically.

Table 1 The values of accuracy, recall, precision, and f1-score
were obtained for the pre-trained models

Model Performance metrics (%)

Accuracy Recall Precision F1 score

DenseNet201 100 100 100 100

ResNet50 99.1 99.1 99.1 99.1

VGG16 99.53 99.53 99.54 99.53

Xception 98.42 98.42 98.43 98.42

Fig. 5 Confusion matrix analyses and ROC plots of the pre-trained models
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Recently, advances in deep learning methods have
played a significant role in the diagnosis of COVID-
19 disease. Toğaçar et al. [42] used pre-trained CNN
models, including AlexNet, VGG-16, and VGG-19, to
determine pneumonia. The dimension of the features

was reduced using the minimum redundancy max-
imum relevance (mRMR) algorithm. Then, the fea-
tures obtained by the mRMR feature selection
algorithm were combined, and this feature set was ap-
plied as the input to machine learning algorithms in-
cluding, KNN, linear discriminant analysis (LDA),
linear regression (LR), and SVM. Finally, the LDA
with an accuracy of 99.41% yielded the most efficient
results. We did not apply any feature extraction
methods, and the models had an end-to-end architec-
ture in comparison with Toğaçar et al. study. Also,
we gained more accuracy in the combination of pre-
trained models with ML algorithms. In this study, the
accuracy of the VGG16 pre-trained model was in
close agreement with the overall classification accur-
acy of Toğaçar et al.’s study. Das et al. [43] used the
transfer learning model of Inception (Xception) to de-
tect COVID-19. Their proposal consisted of convolu-
tion layers, max pooling, stride, global average
pooling, and fully connected. They achieved a detec-
tion accuracy of 0.974 using chest X-ray images. We
gained more accuracy for the Xception model in
comparison with the Narayan Das et al. study. More-
over, we reached the accuracy of 99.62% for the
Xception model combined with the KNN classifier. In
another study, Toğaçar et al. [44] trained the three
datasets (COVID-19, pneumonia, and normal chest
images) using the MobileNetV2 and SqueezeNet deep
learning models and then classified them using the
SVM method. The overall classification accuracy was
99.27%. In our study, the overall classification accur-
acy for the DenseNet201 model in combination with
the SVM classifier was in close agreement with Toğa-
çar et al.’s data. Nevertheless, we assessed several pre-

Fig. 6 ROC plots of the pre-trained models

Table 2 The results were obtained by applying pre-trained
models in combination with five ML classifiers

Model Classifier Performance metrics (%)

Accuracy Recall Precision F1 score

DenseNet201 RF 99.44 99.44 99.45 99.44

SVM 96.48 96.48 96.50 96.50

DT 93.61 93.61 93.69 93.60

KNN 100 100 100 100

LGR 99.16 99.16 99.17 99.16

ResNet50 RF 98.14 98.14 98.17 98.15

SVM 89.9 89.9 90.29 89.88

DT 92.77 92.77 92.84 92.77

KNN 99.81 99.81 99.81 99.81

LGR 98.24 98.24 98.24 98.24

Xception RF 94.16 94.16 94.21 94.16

SVM 89.53 89.53 89.68 89.52

DT 85 85 85 84.98

KNN 99.62 99.62 99.63 99.62

LGR 97.59 97.59 97.59 97.59

VGG16 RF 99.07 99.07 99.08 99.08

SVM 90.27 90.27 90.44 90.26

DT 93.14 93.14 93.15 93.14

KNN 99.81 99.81 99.81 99.81

LGR 95.55 95.55 95.57 95.55
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trained models and ML algorithms and gained more
accuracy than Toğaçar et al. study. The classification
accuracy reached 100% for the pre-trained Dense-
Net201 model and DenseNet201+KNN classifier.
Ozturk et al. [45] proposed a model for accurate
diagnostics of binary classification and multi-class
classification of COVID-19. Their model acquired a
classification accuracy of 98.08% and 87.02% for bin-
ary classes and multi-class cases, respectively. In com-
parison with Ozturk et al. study, we assessed several
models, and classification accuracy reached 100%.
Song et al. [46] developed an accurate computer-
aided procedure for helping clinicians in identifying
COVID-19-infected patients by CT images. They col-
lected chest CT images of 88, 101, and 89 patients di-
agnosed with the COVID-19, bacterial pneumonia,
and healthy persons, respectively. The results showed
that the proposed model could accurately identify the
COVID-19 patients from the healthy with an AUC of
0.99, recall of 0.93, and precision of 0.96. However,
we obtained a classification accuracy of 100%. Ismael
et al. [47] used a deep-learning-based approach, fine-

tuning of pretrained CNN, and end-to-end training of
a developed CNN model to classify patients diagnosed
with the COVID-19 and healthy persons using chest
X-ray images. They used several pre-trained deep
CNN models for deep feature extraction, including
ResNet18, ResNet50, ResNet101, VGG16, and VGG19.
For the classification of the deep features, the SVM
classifier was used. The ResNet50 model and SVM
classifier were obtained the highest accuracy score
with 94.7% among all the obtained results. In our
study, in contrast with Ismael et al., the classification
accuracy reached 100% for the pre-trained Dense-
Net201 model and KNN classifier. Also, following
used models in the Ismael et al. study, for the
ResNet50 and the SVM classifier (DenseNet201+SVM
classifier), we obtained accuracy 99.1 and 96.48, re-
spectively. Zhou et al. [48] proposed an ensemble
deep transfer learning model for COVID-19 detection
in CT images. They have obtained 2933 lung CT im-
ages from COVID-19 patients. The average classifica-
tion accuracy of the ensemble model was 99.05%. Of
note, we gained more accuracy in the combination of

Fig. 7 ROC plots of the pre-trained models in combination with five ML classifiers
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pre-trained models with ML algorithms and pre-
trained models.
In summary, the DenseNet201 and DenseNet201+

KNN classifier models were promising for the diagnosis
of COVID-19 based on the transfer learning and ma-
chine learning regarding achieved results and classifica-
tion accuracy of 100% and can be used as an effective
method for application in clinical routines. There were
some limitations for this study which can be improved
in future researches. We used the deep learning and ML
algorithms with a dataset of chest CT images for
COVID-19 positive cases along with suspected cases for
training the models; however, other lung diseases such
as lung opacity (Non-COVID lung infection) and viral
pneumonia can be added to the database. This work can
also be extended by adding risk and survival prediction
of confirmed/suspected or other lung patients to help
healthcare planning and management strategies.

Conclusion
In the present study, for detecting and classifying
COVID-19 disease from chest CT images, a deep trans-
fer learning model and a deep transfer learning model
combined with an ML classifier are proposed. These
models are fully automated with an end-to-end struc-
ture, and there is no need to use the feature selection
process, and they can perform classification with an ac-
curacy of 100%. Therefore, the mentioned models can
be used in remote places, in low- and middle-income
countries, and laboratory equipment with limited re-
sources to overcome a shortage of radiologists. A limited
number of radiologists are present in every clinic to in-
terpret CT images.

Abbreviations
ML: Machine learning; SARS-CoV-2: Severe acute respiratory syndrome
coronavirus 2; RT-PCR: Reverse transcription-polymerase chain reaction;
LAMP: Loop-mediated isothermal amplification; LFAs: Lateral flow assays;
ELISA: Enzyme-linked immunosorbent assay; CT: Computed tomography;
SVMs: Support vector machines; RF: Random forest; DT: Decision tree;
LGR: Logistic regression; KNN: K-nearest neighbors; CNNs: Convolutional
neural networks

Acknowledgements
The authors express their sincere appreciation to the Hafte-Tir Hospital for
their technical assistance.

Authors’ contributions
S. M. R.: All steps of the study from conception to manuscript drafting and
approval of the final version. M. G.: Analyzing and interpretation of data,
critical revision of the manuscript, and approval of the final version. R. A. F.:
Design of the study, analyzing and interpretation of data, critical revision of
the manuscript, and approval of the final version. H. M.: Conception and
design of the study, critical revision of the manuscript, analyzing and
interpretation of data. H. E. Z.: Acquisition of data, critical revision of the
manuscript, and approval of the final version. The authors read and
approved the final manuscript.

Funding
None.

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Our study was approved by Yasuj University of Medical Sciences (Yasuj, Iran)
with the registration number of “IR.YUMS.REC.1397.” The informed consent
was waived because of the retrospective nature of the study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Medical Physics, Faculty of Medical Sciences, Tarbiat
Modares University, Tehran, Iran. 2Department of Electrical and Computer
Engineering, Tarbiat Modares University, Al-Ahmad and Chamran Cross,
Tehran, Iran. 3Cellular and Molecular Research Center, Yasuj University of
Medical Sciences, Yasuj, Iran. 4School of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran.

Received: 17 March 2021 Accepted: 2 June 2021

References
1. Abel L, Dessein AJ (1998) Genetic epidemiology of infectious diseases in

humans: design of population-based studies. Emerg Infect Dis 4(4):593–603.
https://doi.org/10.3201/eid0404.980409

2. Zu ZY, Di Jiang M, Xu PP, Chen W, Ni QQ, Lu GM et al (2020) Coronavirus
disease 2019 (COVID-19): a perspective from China. Radiology 296(2):E15–
E25. https://doi.org/10.1148/radiol.2020200490

3. Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X,
Zhang X, Pan A, Wei H (2020) Effective treatment of severe COVID-19
patients with tocilizumab. Proc Natl Acad Sci 117(20):10970–10975. https://
doi.org/10.1073/pnas.2005615117

4. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R (2020) Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-
2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents
55(3):105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

5. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-
Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-
Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-
Grisales GJ, Ramírez-Vallejo E, Suárez JA, Zambrano LI, Villamil-Gómez WE,
Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H,
Ahmad T, Sah R, Latin American Network of Coronavirus Disease 2019-
COVID-19 Research (LANCOVID-19) (2020) Clinical, laboratory and imaging
features of COVID-19: a systematic review and meta-analysis. Travel Med
Infect Dis 34:101623. https://doi.org/10.1016/j.tmaid.2020.101623

6. MacIntyre CR (2020) Case isolation, contact tracing, and physical distancing
are pillars of COVID-19 pandemic control, not optional choices. Lancet
Infect Dis 20(10):1105–1106. https://doi.org/10.1016/S1473-3099(20)30512-0

7. Böger B, Fachi MM, Vilhena RO, de Fátima Cobre A, Tonin FS, Pontarolo R
(2020) Systematic review with meta-analysis of the accuracy of diagnostic
tests for COVID-19. Am J Infect Control 49(1):21–29. https://doi.org/10.1016/
j.ajic.2020.07.011

8. Tahamtan A, Ardebili A (2020) Real-time RT-PCR in COVID-19 detection:
issues affecting the results. Expert Rev Mol Diagn 20(5):453–454. https://doi.
org/10.1080/14737159.2020.1757437

9. Hernández-Huerta MT, Pérez-Campos Mayoral L, Sánchez Navarro LM,
Mayoral-Andrade G, Pérez-Campos Mayoral E, Zenteno E et al (2021) Should
RT-PCR be considered a gold standard in the diagnosis of COVID-19? J Med
Virol 93(1):137–138. https://doi.org/10.1002/jmv.26228

10. Poon LLM, Chan KH, Wong OK, Yam WC, Yuen KY, Guan Y, Lo YMD, Peiris
JSM (2003) Early diagnosis of SARS coronavirus infection by real time RT-
PCR. J Clin Virol 28(3):233–238. https://doi.org/10.1016/j.jcv.2003.08.004

Rezaeijo et al. Egyptian Journal of Radiology and Nuclear Medicine          (2021) 52:145 Page 11 of 12

https://doi.org/10.3201/eid0404.980409
https://doi.org/10.1148/radiol.2020200490
https://doi.org/10.1073/pnas.2005615117
https://doi.org/10.1073/pnas.2005615117
https://doi.org/10.1016/j.ijantimicag.2020.105924
https://doi.org/10.1016/j.tmaid.2020.101623
https://doi.org/10.1016/S1473-3099(20)30512-0
https://doi.org/10.1016/j.ajic.2020.07.011
https://doi.org/10.1016/j.ajic.2020.07.011
https://doi.org/10.1080/14737159.2020.1757437
https://doi.org/10.1080/14737159.2020.1757437
https://doi.org/10.1002/jmv.26228
https://doi.org/10.1016/j.jcv.2003.08.004


11. Li Y, Xia L (2020) Coronavirus disease 2019 (COVID-19): role of chest CT in
diagnosis and management. Am J Roentgenol 214(6):1280–1286. https://
doi.org/10.2214/AJR.20.22954

12. Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT
findings and clinical conditions of coronavirus disease (COVID-19)
pneumonia: a multicenter study. Am J Roentgenol 214(5):1072–1077.
https://doi.org/10.2214/AJR.20.22976

13. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L (2020)
Correlation of chest CT and RT-PCR testing for coronavirus disease 2019
(COVID-19) in China: a report of 1014 cases. Radiology 296(2):E32–E40.
https://doi.org/10.1148/radiol.2020200642

14. Masoud Rezaeijo S, Abedi-Firouzjah R, Ghorvei M, Sarnameh S (2021)
Screening of COVID-19 based on the extracted radiomics features from
chest CT images. J X-Ray Sci Technol (Preprint) 29(2):229–243. https://doi.
org/10.3233/XST-200831

15. Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X (2020) Deep learning in
medical image registration: a review. Phys Med Biol 65(20):20TR01

16. Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2018) Deep learning for
healthcare: review, opportunities and challenges. Brief Bioinform 19(6):1236–
1246. https://doi.org/10.1093/bib/bbx044

17. Ni Q, Sun ZY, Qi L, Chen W, Yang Y, Wang L, Zhang X, Yang L, Fang Y, Xing
Z, Zhou Z, Yu Y, Lu GM, Zhang LJ (2020) A deep learning approach to
characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT
images. Eur Radiol. 30(12):6517–6527. https://doi.org/10.1007/s00330-020-
07044-9

18. Huang L, Han R, Ai T, Yu P, Kang H, Tao Q, Xia L (2020) Serial quantitative
chest CT assessment of COVID-19: a deep learning approach. Radiol
Cardiothorac Imaging 2(2):e200075. https://doi.org/10.1148/ryct.2020200075

19. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Lung infection
quantification of COVID-19 in CT images with deep learning. ArXiv Prepr
ArXiv200304655. 2020

20. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data
Eng 22(10):1345–1359

21. Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO,
Goldgof D (2016) Deep feature transfer learning in combination with
traditional features predicts survival among patients with lung
adenocarcinoma. Tomography 2(4):388–395. https://doi.org/10.18383/j.tom.2
016.00211

22. Jaiswal A, Gianchandani N, Singh D, Kumar V, Kaur M (2020) Classification of
the COVID-19 infected patients using DenseNet201 based deep transfer
learning. J Biomol Struct Dyn:1–8. https://doi.org/10.1080/07391102.2020.1
788642

23. Rezaeijo SM, Ghorvei M, Alaei M (2020) A machine learning method based
on lesion segmentation for quantitative analysis of CT radiomics to detect
covid-19. In: 2020 6th Iranian Conference on Signal Processing and
Intelligent Systems (ICSPIS). Mashhad: IEEE, pp 1–5. https://doi.org/10.1109/
ICSPIS51611.2020

24. Fatima M, Pasha M (2017) Survey of machine learning algorithms for
disease diagnostic. J Intell Learn Syst Appl 9(01):1–16. https://doi.org/10.423
6/jilsa.2017.91001

25. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–
297. https://doi.org/10.1007/BF00994018

26. Quinlan JR (1987) Simplifying decision trees. Int J Man-Mach Stud 27(3):221–
234. https://doi.org/10.1016/S0020-7373(87)80053-6

27. Ho TK (1998) The random subspace method for constructing decision
forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

28. Peng C-YJ, Lee KL, Ingersoll GM (2002) An introduction to logistic regression
analysis and reporting. J Educ Res 96(1):3–14. https://doi.org/10.1080/0022
0670209598786

29. Keller JM, Gray MR, Givens JA (1985) A fuzzy k-nearest neighbor algorithm.
IEEE Trans Syst Man Cybern 14(4):580–585. https://doi.org/0018-9472/85/
0700-0585$01.00

30. Rawat W, Wang Z (2017) Deep convolutional neural networks for image
classification: a comprehensive review. Neural Comput 29(9):2352–2449.
https://doi.org/10.1162/neco_a_00990

31. Dhillon A, Verma GK (2020) Convolutional neural network: a review of
models, methodologies and applications to object detection. Prog Artif
Intell 9(2):85–112. https://doi.org/10.1007/s13748-019-00203-0

32. Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent
architectures of deep convolutional neural networks. Artif Intell Rev 53(8):
5455–5516. https://doi.org/10.1007/s10462-020-09825-6

33. Aloysius N, Geetha M (2017) A review on deep convolutional neural
networks. In: 2017 International Conference on Communication and Signal
Processing (ICCSP). Chennai: IEEE, pp 588–592. https://doi.org/10.1109/
ICCSP.2017.8286426

34. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S
(2016) Lung pattern classification for interstitial lung diseases using a deep
convolutional neural network. IEEE Tans Med Imaging 35(5):1207–1216.
https://doi.org/10.1109/TMI.2016.2535865

35. Agarap AF (2018) Deep learning using rectified linear units (relu). ArXiv
Prepr ArXiv180308375

36. Christlein V, Spranger L, Seuret M, Nicolaou A, Král P, Maier A (2019) Deep
generalized max pooling. In: 2019 International Conference on Document
Analysis and Recognition (ICDAR). Sydney: IEEE, pp 1090–1096. https://doi.
org/10.1109/ICDAR.2019.00177

37. Liang X, Wang X, Lei Z, Liao S, Li SZ (2017) Soft-margin softmax for deep
classification. In: Liu D., Xie S., Li Y., Zhao D., El-Alfy ES. (eds) Neural
Information Processing. ICONIP 2017. Lecture Notes in Computer Science,
vol 10635. Springer. https://doi.org/10.1007/978-3-319-70096-0_43

38. Liaw A, Wiener M (2002) Classification and regression by randomForest. R
News 2(3):18–22

39. Noble WS (2006) What is a support vector machine? Nat Biotechnol 24(12):
1565–1567. https://doi.org/10.1038/nbt1206-1565

40. Brijain M, Patel R, Kushik MR, Rana K (2014) A survey on decision tree
algorithm for classification

41. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach
Learn Res 9(11):2579–2605

42. Toğaçar M, Ergen B, Cömert Z, Özyurt F (2020) A deep feature learning
model for pneumonia detection applying a combination of mRMR feature
selection and machine learning models. IRBM 41(4):212–222. https://doi.
org/10.1016/j.irbm.2019.10.006

43. Narayan Das N, Kumar N, Kaur M, Kumar V, Singh D (2020) Automated deep
transfer learning-based approach for detection of COVID-19 infection in
chest X-rays. Ing Rech Biomed IRBM Biomed Eng Res (In press). https://doi.
org/10.1016/j.irbm.2020.07.001

44. Toğaçar M, Ergen B, Cömert Z (2020 Jun) COVID-19 detection using deep
learning models to exploit social mimic optimization and structured chest
X-ray images using fuzzy color and stacking approaches. Comput Biol Med.
121:103805. https://doi.org/10.1016/j.compbiomed.2020.103805

45. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra AU (2020)
Automated detection of COVID-19 cases using deep neural networks with
X-ray images. Comput Biol Med 121:103792. https://doi.org/10.1016/j.
compbiomed.2020.103792

46. Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Wang R, Zhao
H, Zha Y, Shen J, Chong Y, Yang Y (2021) Deep learning enables accurate
diagnosis of novel coronavirus (COVID-19) with CT images. IEEE/ACM Trans
Comput Biol Bioinform:1. https://doi.org/10.1109/TCBB.2021.3065361

47. Ismael AM, Şengür A (2021) Deep learning approaches for COVID-19
detection based on chest X-ray images. Expert Syst Appl 164:114054.
https://doi.org/10.1016/j.eswa.2020.114054

48. Zhou T, Lu H, Yang Z, Qiu S, Huo B, Dong Y (2021) The ensemble deep
learning model for novel COVID-19 on CT images. Appl Soft Comput. 98:
106885. https://doi.org/10.1016/j.asoc.2020.106885

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Rezaeijo et al. Egyptian Journal of Radiology and Nuclear Medicine          (2021) 52:145 Page 12 of 12

https://doi.org/10.2214/AJR.20.22954
https://doi.org/10.2214/AJR.20.22954
https://doi.org/10.2214/AJR.20.22976
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.3233/XST-200831
https://doi.org/10.3233/XST-200831
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1007/s00330-020-07044-9
https://doi.org/10.1007/s00330-020-07044-9
https://doi.org/10.1148/ryct.2020200075
https://doi.org/10.18383/j.tom.2016.00211
https://doi.org/10.18383/j.tom.2016.00211
https://doi.org/10.1080/07391102.2020.1788642
https://doi.org/10.1080/07391102.2020.1788642
https://doi.org/10.1109/ICSPIS51611.2020
https://doi.org/10.1109/ICSPIS51611.2020
https://doi.org/10.4236/jilsa.2017.91001
https://doi.org/10.4236/jilsa.2017.91001
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1109/ICCSP.2017.8286426
https://doi.org/10.1109/ICCSP.2017.8286426
https://doi.org/10.1109/TMI.2016.2535865
https://doi.org/10.1109/ICDAR.2019.00177
https://doi.org/10.1109/ICDAR.2019.00177
https://doi.org/10.1007/978-3-319-70096-0_43
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1016/j.irbm.2019.10.006
https://doi.org/10.1016/j.irbm.2019.10.006
https://doi.org/10.1016/j.irbm.2020.07.001
https://doi.org/10.1016/j.irbm.2020.07.001
https://doi.org/10.1016/j.compbiomed.2020.103805
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1109/TCBB.2021.3065361
https://doi.org/10.1016/j.eswa.2020.114054
https://doi.org/10.1016/j.asoc.2020.106885

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Data set and data acquisition
	CNNs and proposed deep transfer learning models
	Machine learning methods
	Experimental setup

	Results
	Deep transfer learning models analysis
	An analysis of combining the pre-trained models with the ML methods

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

