Patients undergoing treatment for symptomatic superficial femoral artery (SFA) occlusive were considered for inclusion in this study from November 2015 until September 2017. This is a retrospective study that was conducted on 30 patients complaining of lower limb ischemia: Rutherford class 3 to 6 clinically and with superficial femoral artery occlusive disease TASC II type A and B lesions.
Patients were distributed into two groups according to the disease location: group 1: ostial lesions (n = 10) and group 2: other segment lesions (n = 20). All were studied for immediate complications that occurred during the percutaneous transluminal angioplasty of superficial femoral artery occlusive disease and needed bailout procedures to save the limb or the patient; these complications included residual stenosis ≥ 30%, flow-limiting dissection, perforation or rupture, thrombosis, equipment failure, arterial spasm, or device embolization.
All patients underwent evaluation by complete history taking then full clinical examination, and preprocedural investigations included duplex scanning and CT angiography before intervention to detect the site and extent of the disease and the ABI. Evaluation of associated co-morbidities by ECG or ECHO Doppler was performed.
Bailout procedures
Patients were admitted 1 day before or on the day of the procedure. All interventions were done in angio suite (Philips; Allura X per FD 20/722028164) and C-arm image intensifier with road mapping was used. Patients were placed in supine position. Both groins were prepared using antiseptic solution povidone iodine (10%). All interventions were done under local anesthesia (lidocaine 2%, 3–5 mg/kg) and sometimes combined with sedation in irritable patients.
The arterial access was planned after reviewing of the preoperative imaging; The SFA was accessed through either antegrade ipsilateral common femoral artery puncture or contralateral retrograde femoral puncture and performing a crossover technique (Fig. 1). The choice out of the above options depended on the anatomy and operator preference. In cases of failure of the previous 2 accesses, retrograde ipsilateral puncture of the popliteal artery where the patient lies on supine or lateral decubitus position (Fig. 2) or transtibial access were used as bailout procedures (Fig. 3a, b).
After gaining access, a standard 6F sheath was inserted, and free arterial flow is allowed to confirm the right position of the sheath. Angiography was done to confirm data obtained by preoperative investigations and SFA lesions were identified using nonionic low osmolar dye diluted to 50% with normal saline. Systemic anticoagulation was given as follows: heparin IV 5000 IU initially and then 8–10 IU/kg/h and 1000 IU per 500 ml of flushing solution to prevent wires, sheath, and thrombosis.
Crossing the lesion was done by different techniques and equipment being individualized according to each case but the standard tools for recanalization of stenosis and occlusions consisted of a 0.035-inch hydrophilic guidewires (standard type (Terumo Wire, Terumo) for stenosis and stiff type (Terumo Wire, Terumo) for CTO and an angled-tip angiographic catheter (4F or 5F Bernstein; Angiodynamic, Soft Vu or vertebral; Medtronic). Guidewires were used for crossing the lesion transluminal or subintimal.
The proximal occlusion was penetrated and followed by negotiation to the full extent of the occlusion until the distal patent lumen. A drilling motion of the guidewire was performed to properly penetrate and cross the lesion. Often times, a short and low profile coaxial catheter balloon size 3–4 mm can be used as a support catheter. Once the lesion has been crossed, the catheter should be advanced beyond the lesion, and the wire removed and contrast were injected to ensure that the catheter was within the lumen.
Then, a balloon catheter (5–6 mm; Admiral xtreme, INVAtec) selected for appropriate diameter (5 or 6 mm) and length was advanced over the wire to the distal extent of the lesion. The balloon was inflated until any waist on the balloon has been abolished. The inflation time was standardized; inflation times vary from 30 s to 3 min.
Prior to inflation of the balloon, the patient should be warned that they may experience pain, although this should not be excessive. As the balloon inflates, assessment of the roadmap image should confirm that the balloon catheter was appropriately sized. If there was excessive pain or the balloon looks too big, the balloon was exchanged for a smaller diameter balloon.
After balloon deflation, the balloon catheter was withdrawn slightly, and the balloon catheter should be re-inflated with overlaps until the whole lesion had been covered. The balloon catheter was withdrawn completely, while keeping the guidewire in place across the lesion.
Angiography to assess the result was performed by injecting contrast medium through the side arm of the sheath. There should be rapid forward flow through the treated segment with no residual stenosis greater than 30%. Dissections in the wall of the artery were expected and did not imply a poor result unless they were flow limiting.
Acute complications that needed bailout procedures included arterial perforation, dissection, thrombosis, residual stenosis ≥ 30%, spasm of distal arteries, device embolization, and equipment failure. Arterial perforation could occur both at the site of balloon angioplasty and distally from the guidewire. When there were complications, bailout procedures started and depended on the disease location and the type of complications and included open surgical exposure for most ostial lesion complications. bailout procedures for other segment complications included balloon dilatation by lager diameter balloon, stenting, or surgery (bypass or interposition graft) for residual stenosis ≥ 30% or flow-limiting dissection. But for perforation or rupture, balloon tamponade covered stent (Fig. 4) or surgical intervention by interposition graft, bypass surgery, vein patch, or direct closure.
For thrombosis, if the patient was critically affected, thrombectomy was done during the angioplasty by fogarty over the wire or open surgical thrombectomy. But if the patient was not critically affected, thrombolytic therapy was applied via Uni Fuse catheter (Angiodynamics); 15, 40, or 50 cm or fontaine catheter (Boston Scientific); and 30 or 50 cm (according the length affected), i.e., tissue plasminogen activator (actylase, 50 mg) (2 bottles, one powder and another solution of 50 ml:10 ml loading dose was injected followed by flush saline before application of the occluding wire then 0.01–0.05 mg/kg/h maintenance dose (1 ml/h till 40 h; this dose was monitored using fibrinogen level to avoid serious bleeding) with heparin ampoule IV every 4–6 h or continuous infusion 500iu/h; then imaging and managing according to findings.
In arterial spasm, vasodilator agent (nitroglycerine, 50–100 μg) was administered; and occasionally, a guidewire may have to be removed to distinguish refractory spasm from dissection. But if there was device embolization, it was removed by vascular snare and grasping forceps.
In equipment failure, failed balloon deflation (air lock) was managed with continuous negative pressure with endoflator or a large (20 ml or larger) syringe but if failed to pass into sheath, the balloon was punctured from outside to rupture it and withdrawn into the sheath with rotation to fold its wings. Balloon herniation was treated by traction to the catheter during inflation; but if failed, this problem was solved by using a longer balloon. Balloon rupture was managed by switching to another balloon using its shoulder for dilatation, but if this balloon ruptured, switch to a thicker and more puncture-resistant polymer balloon; a stent was applied and the lesion through the stent was dilated; if this balloon ruptured on the end of the stent, the balloon was replaced by another one, and the end of the stent was dilated last. The balloon catheter did not track along the standard guidewire; this wire was exchanged for a stiffer guidewire and the balloon tracked if failed tracking; long sheath was applied.
Stent insertion was done in the patients where there were elastic recoil (if the balloon inflates fully, but the stenosis persists) and a flow-limiting dissection (Fig. 5); prolonged balloon inflation can be performed to (tack down) the flap. If this fails, other presentations such as recurrent lesions after a recent PTA or long segment occlusions or a self-expanding stent was used (5 or 6 mm, Everflex, ev3). The stent should not be oversized relative to the diameter of the SFA. The stent should be long enough to cover the lesion with 5–10 mm coverage of the normal artery on either side of the lesion.
Then, auxiliary procedures like tibial angioplasty were performed when needed to enhance and augment the outflow vessels using the following tools: previously used 0.035-inch hydrophilic guidewires or 0.018-inch guidewire “Boston Scientific V-18™” control wire for tibials, and 0.014 inch guidewire “Abbott Pilot™” for pedal arteries. Long tibial balloons low-profile with diameters from 2 or 3 mm (less than 4F) designed for tibial angioplasty purposes “Amphirion/Invatec, Admiral.” They are made to work on a 0.035, 0.014, “or a 0.018 inch”. The wire is left across the lesion for access and an intra-arterial nitroglycerin (50–100 μg) is given, and a check angiogram is performed, and redilatation is done whenever required.
The endpoint of the procedure was unrestricted forward flow of contrast with no evidence of significant (> 30%) residual stenosis. The runoff was assessed at the end of the procedure for the occurrence of distal embolization caused by the PTA or stent insertion. Lastly, PTA of any relevant tibial lesions is performed during the same procedure (patients are being treated for critical ischemia). When the procedure was completed, the arterial access sheath was removed immediately, when more than 5000 IU of heparin was given, and the sheath removal was delayed until aPTT normalizes. Hemostasis was achieved by manual compression. Digital compression was held proximal to the skin puncture site for 15–20 min, and mobilization was delayed for 6–12 h.
Follow-up
Clinical follow-up consisted of pulse examination and evaluation of the ulcer or amputation site healing or resolution of infection.
Clinical outcomes, primary patency, secondary patency, and complications following the procedure were reported. All patients were re-examined after 1 week to check for access site complications and to confirm patency.
Statistical analysis
Analysis of data was done by using the Statistical Package for Social Sciences (SPSS) version 16 (Bristol university in the UK). Quantitative data were presented as mean and standard deviation and were analyzed by ANOVA test. Qualitative data was presented as numbers and percentages and were analyzed by using chi-square. (P value < 0.05) was considered significant while (P value < 0.01) was considered highly significant. But (P value > 0.05) was considered insignificant.