Horton KM (2002) Multidetector CT and three-dimensional imaging of the pancreas: state of the art. J Gastrointest Surg 6:126–128
Article
Google Scholar
Bashir MR, Gupta RT (2012) MDCT evaluation of the pancreas: nuts and bolts. Radiol Clin N Am 50:365–377
Article
Google Scholar
Ros PR, Mortele KJ (2001) Imaging features of pancreatic neoplasms. JBR-BTR 84:239–249
CAS
PubMed
Google Scholar
Sahani DV, Shah ZK, Catalano OA, Boland GW, Brugge WR (2008) Radiology of pancreatic adenocarcinoma: current status of imaging. J Gastroenterol Hepatol 23:23–33
Article
Google Scholar
Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34
Article
Google Scholar
Callery MP, Chang KJ, Fishman EK, Talamonti MS, William Traverso L, Linehan DC (2009) Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol 16:1727–1733
Article
Google Scholar
Brennan DD, Zamboni GA, Raptopoulos VD, Kruskal JB (2007) Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiographics 27:1653–1666
Article
Google Scholar
Chu AJ, Lee JM, Lee YJ, Moon SK, Han JK, Choi BI (2012) Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. Br J Radiol 85:e891–e898
Article
CAS
Google Scholar
De La Cruz MS, Young AP, Ruffin MT (2014) Diagnosis and management of pancreatic cancer. Am Fam Physician 89:626–632
Google Scholar
Raman SP, Horton KM, Fishman EK (2012) Multimodality imaging of pancreatic cancer-computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J 18:511–522
Article
Google Scholar
Kim JH, Park SH, Yu ES, Kim MH, Kim J, Byun JH et al (2010) Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology 257:87–96
Article
Google Scholar
Klapman J, Malafa MP (2008) Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control 15:280–287
Article
Google Scholar
Johnson TR (2012) Dual-energy CT: general principles. AJR Am J Roentgenol 199:S3–S8
Article
Google Scholar
Bhosale P, Le O, Balachandran A, Fox P, Paulson E, Tamm E (2015) Quantitative and qualitative comparison of single-source dual-energy computed tomography and 120-kVp computed tomography for the assessment of pancreatic ductal adenocarcinoma. J Comput Assist Tomogr 39:907–913
Article
Google Scholar
Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE (2013) Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol 68:148–154
Article
CAS
Google Scholar
Granata V, Fusco R, Catalano O, Setola SV, de Lutio di Castelguidone E, Piccirillo M et al (2016) Multidetector computer tomography in the pancreatic adenocarcinoma assessment: an update. Infect Agent Cancer 11:57
Article
Google Scholar
Almeida IP, Schyns LE, Ollers MC, van Elmpt W, Parodi K, Landry G et al (2017) Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 44:171–179
Article
CAS
Google Scholar
Aran S, Shaqdan KW, Abujudeh HH (2014) Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations. Emerg Radiol 21:391–405
Article
Google Scholar
Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18:555–569
Article
Google Scholar
Gabbai M, Leichter I, Romman Z, Altman A, Sosna J (2013) The clinical impact of retrospective analysis in spectral detector dual energy body CT. Paper presented at radiological society of North America 2013 scientific assembly and annual meeting, McCormick Place, Chicago, 1- 6 December 2013.
Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744
Article
CAS
Google Scholar
Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271:327–342
Article
Google Scholar
Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31:1031–1046 discussion 1047-1050
Article
Google Scholar
Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15
Article
Google Scholar
Apfaltrer P, Sudarski S, Schneider D, Nance JW, Haubenreisser H, Fink C et al (2014) Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol 83:322–328
Article
Google Scholar
Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV (2014) Oncologic applications of dual-energy CT in the abdomen. Radiographics 34:589–612
Article
Google Scholar
Di Maso LD, Huang J, Bassetti MF, DeWerd LA, Miller JR (2018) Investigating a novel split-filter dual-energy CT technique for improving pancreas tumor visibility for radiation therapy. J Appl Clin Med Phys 19:676–683
Article
Google Scholar
McNamara MM, Little MD, Alexander LF, Carroll LV, Beasley TM, Morgan DE (2015) Multireader evaluation of lesion conspicuity in small pancreatic adenocarcinomas: complimentary value of iodine material density and low keV simulated monoenergetic images using multiphasic rapid kVp-switching dual energy CT. Abdom Imaging 40:1230–1240
Article
Google Scholar
Brooks RA (1977) A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J Comput Assist Tomogr 1:487–493
Article
CAS
Google Scholar
Macari M, Spieler B, Kim D, Graser A, Megibow AJ, Babb J et al (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol 194:W27–W32
Article
Google Scholar
Lin XZ, Wu ZY, Tao R, Guo Y, Li JY, Zhang J et al (2012) Dual energy spectral CT imaging of insulinoma-value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol 81:2487–2494
Article
Google Scholar
Hardie AD, Picard MM, Camp ER, Perry JD, Suranyi P, De Cecco CN et al (2015) Application of an advanced image-based virtual monoenergetic reconstruction of dual source dual-energy CT data at low keV increases image quality for routine pancreas imaging. J Comput Assist Tomogr 39:716–720
Article
Google Scholar
Albrecht MH, Scholtz JE, Husers K, Beeres M, Bucher AM, Kaup M et al (2016) Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast. Eur Radiol 26:1863–1870
Article
Google Scholar
Kalender WA, Klotz E, Kostaridou L (1988) An algorithm for noise suppression in dual energy CT material density images. IEEE Trans Med Imaging 7:218–224
Article
CAS
Google Scholar
Chang W, Lee JM, Lee K, Yoon JH, Yu MH, Han JK et al (2013) Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Investig Radiol 48:598–606
Article
CAS
Google Scholar
Dong X, Niu T, Zhu L (2014) Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Med Phys 41:051909
Article
Google Scholar
Lehmann L, Alvarez R, Macovski A, Brody W, Pelc N, Riederer SJ et al (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8:659–667
Article
CAS
Google Scholar