Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E (2020) A novel coronavirus emerging in China—key questions for impact assessment. New Engl J Med 382:692–694
Article
CAS
PubMed
Google Scholar
Wang C, Horby PW, Hayden FG, Gao GF (2020) A novel coronavirus outbreak of global health concern. Lancet 395(10223):470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Cucinotta D, Vanelli M (2020) WHO declares COVID-19 a pandemic. Acta Biomed 91(1):157–160. https://doi.org/10.23750/abm.v91i1.9397
Article
PubMed
PubMed Central
Google Scholar
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382:1708–1720. https://doi.org/10.1056/NEJMoa2002032
Article
CAS
PubMed
Google Scholar
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Ai T, Yang ZL, Hou HY et al (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296:E32–E40
Article
PubMed
Google Scholar
Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) Essentials for radiologists on COVID-19: an update-radiology scientific expert panel. Radiology 296:E113–E114. https://doi.org/10.1148/radiol.2020200527
Article
PubMed
Google Scholar
Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM et al (2020) Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology 296:E15–E25. https://doi.org/10.1148/radiol.2020200490
Article
PubMed
Google Scholar
Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J (2020) Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. https://doi.org/10.1148/radiol.2020200343
Article
PubMed
PubMed Central
Google Scholar
Liu J, Yu H, Zhang S (2020) The indispensable role of chest CT in the detection of coronavirus disease 2019 (COVID-19). Eur J Nucl Med Mol Imaging 47(7):1638–1639. https://doi.org/10.1007/s00259-020-04795-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai H, Zhang X, Xia J, Zhang T, Shang Y, Huang R et al (2020) High-resolution chest CT features and clinical characteristics of patients infected with COVID-19 in Jiangsu, China. Int J Infect Dis 95:106–112. https://doi.org/10.1016/j.ijid.2020.04.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang P, Liu T, Huang L, Liu H, Lei M, Xu W et al (2020) Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology 295(1):22–23. https://doi.org/10.1148/radiol.2020200330
Article
PubMed
Google Scholar
Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A (2020) Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol 215(1):87–93. https://doi.org/10.2214/AJR.20.23034
Article
PubMed
Google Scholar
Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22976:1-6
Article
PubMed
Google Scholar
Pan F, Ye T, Sun P et al (2020) Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology 295(3):715–721. https://doi.org/10.1148/radiol.2020200370
Article
PubMed
Google Scholar
Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434. https://doi.org/10.1016/S1473-3099(20)30086-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernheim A, Mei X, Huang M et al (2020) Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 295:685–691. https://doi.org/10.1148/radiol.2020200463
Article
Google Scholar
Wu J, Wu X, Zeng W, Guo D, Fang Z, Chen L, Huang H, Li C (2020) Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Investig Radiol 55(5):257–261
Article
CAS
Google Scholar
Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X et al (2020) Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 181(6):1423–1433. https://doi.org/10.1016/j.cell.2020.04.045
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Hui H, Niu M, Li L, Wang L, He B, Yang X et al (2020) Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. Eur J Radiol 128:109041. https://doi.org/10.1016/j.ejrad.2020.109041
Article
PubMed
PubMed Central
Google Scholar
Yang S, Jiang L, Cao Z, Wang L, Cao J, Feng R, Zhang Z, Xue X, Shi Y, Shan F (2020) Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: a pilot study. Ann Transl Med 8(7):450. https://doi.org/10.21037/atm.2020.03.132
Article
CAS
PubMed
PubMed Central
Google Scholar
Yılmaz Demirci N, UğraşDikmen A, Taşçı C, Doğan D, Arslan Y, Öcal N et al (2021) Relationship between chest computed tomography findings and clinical conditions of coronavirus disease (COVID-19): a multicentre experience. Int J Clin Pract 9:e14459. https://doi.org/10.1111/ijcp.14459
Article
CAS
Google Scholar
Quispe-Cholan A, Anticona-De-La-Cruz Y, Cornejo-Cruz M et al (2020) Tomographic findings in patients with COVID-19 according to evolution of the disease. Egypt J Radiol Nucl Med 51:215. https://doi.org/10.1186/s43055-020-00329-5
Article
Google Scholar
Colombi D, Bodini FC, Petrini M, Maffi G, Morelli N, Milanese G et al (2020) Well-aerated lung on admitting chest CT to predict adverse outcome in COVID-19 pneumonia. Radiology 296(2):E86–E96
Article
PubMed
Google Scholar
Suri JS, Agarwal S, Gupta SK, Puvvula A, Biswas M, Saba L et al (2021) A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Comput Biol Med 130:104210. https://doi.org/10.1016/j.compbiomed.2021.104210
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson S, Kay FU, Abbara S (2020) Radiological society of North America expert consensus statement on reporting chest CT findings related to COVID-19. Endorsed by the society of thoracic radiology, the American College of Radiology, and RSNA. J Thorac Imaging 35(4):219–227
Article
PubMed
Google Scholar
Prokop M, van Everdingen W, van Rees Vellinga T (2020) CO-RADS: a categorical CT assessment scheme for patients with suspected COVID-19: definition and evaluation. Radiology 296(2):E97–E104
Article
PubMed
Google Scholar
Lieveld AWE, Azijli K, Teunissen BP, van Haaften RM, Kootte RS, van den Berk IAH et al (2021) Chest CT in COVID-19 at the ED: validation of the COVID-19 reporting and data system (CO-RADS) and CT severity score: a prospective, multicenter, observational study. Chest 159(3):1126–1135. https://doi.org/10.1016/j.chest.2020.11.026
Article
CAS
PubMed
Google Scholar
Qiu J, Peng S, Yin J, Wang J, Jiang J, Li Z et al (2021) A radiomics signature to quantitatively analyze COVID-19-infected pulmonary lesions. Interdiscip Sci 13(1):61–72. https://doi.org/10.1007/s12539-020-00410-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang YC, Yu CJ, Chang SC, Galvin JR, Liu HM, Hsiao CH et al (2005) Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: evaluation with thin-section CT. Radiology 236(3):1067–1075. https://doi.org/10.1148/radiol.2363040958
Article
PubMed
Google Scholar
Ichikado K, Suga M, Muranaka H (2006) Prediction of prognosis for acute respiratory distress syndrome with thin-section CT: validation in 44 cases. Radiology 238(1):321–329
Article
PubMed
Google Scholar
Francone M, Iafrate F, Masci GM, Coco S, Cilia F, Manganaro L et al (2020) Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol 30(12):6808–6817. https://doi.org/10.1007/s00330-020-07033-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan X, Yao L, Tan Y, Shen Z, Zheng H, Zhou H et al (2021) Quantitative and semi-quantitative CT assessments of lung lesion burden in COVID-19 pneumonia. Sci Rep 11(1):5148. https://doi.org/10.1038/s41598-021-84561-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang L, Han R, Ai T, Yu P, Han K, Qian T et al (2020) Serial quantitative chest CT assessment of COVID-19: deep-learning approach. Radiology 2(2):e200075. https://doi.org/10.1148/ryct.2020200075
Article
PubMed
PubMed Central
Google Scholar
Yang R, Li X, Liu H, Zhen Y, Zhang X, Qiuxia X, Luo Y et al (2020) Chest CT severity score: an imaging tool for assessing severe COVID-19. Radiology 2(2):e200047. https://doi.org/10.1148/ryct.2020200047
Article
PubMed
PubMed Central
Google Scholar
Robbie H, Wells AU, Jacob J, Walsh SLF, Nair A, Srikanthan A et al (2019) Visual and automated CT measurements of lung volume loss in idiopathic pulmonary fibrosis. AJR Am J Roentgenol 213(2):318–324. https://doi.org/10.2214/AJR.18.20884
Article
PubMed
Google Scholar
Yin X, Min X, Nan Y, Feng Z, Li B, Cai W et al (2020) Assessment of the severity of coronavirus disease: quantitative computed tomography parameters versus semiquantitative visual score. Korean J Radiol 21(8):998–1006. https://doi.org/10.3348/kjr.2020.0423
Article
PubMed
PubMed Central
Google Scholar
COVID-19 Treatment Guidelines Panel (2021) Coronavirus disease 2019 (COVID-19) treatment guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/. Accessed 15 June 2021
Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3):697–722
Article
PubMed
Google Scholar
Peck KR (2020) Early diagnosis and rapid isolation: response to COVID-19 outbreak in Korea. Clin Microbiol Infect 26(7):805–807. https://doi.org/10.1016/j.cmi.2020.04.025
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Xia LM (2020) Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol 214:1280–1286. https://doi.org/10.2214/AJR.20.22954
Article
PubMed
Google Scholar
Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N et al (2020) CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics 10(12):5613–5622. https://doi.org/10.7150/thno.45985
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishiyama A, Kawata N, Yokota H, Sugiura T, Matsumura Y, Higashide T et al (2020) A predictive factor for patients with acute respiratory distress syndrome: CT Lung volumetry of the well-aerated region as an automated method. Eur J Radiol 122:108748. https://doi.org/10.1016/j.ejrad.2019.108748
Article
PubMed
Google Scholar
Sumikawa H, Johkoh T, Yamamoto S, Yanagawa M, Inoue A, Honda O et al (2009) Computed tomography values calculation and volume histogram analysis for various computed tomographic patterns of diffuse lung diseases. J Comput Assist Tomogr 33(5):731–738. https://doi.org/10.1097/RCT.0b013e31818da65c
Article
PubMed
Google Scholar
Bankier AA, Madani A, Gevenois PA (2002) CT quantification of pulmonary emphysema: assessment of lung structure and function. Crit Rev Comput Tomogr 43(6):397–415
Article
Google Scholar
Alihodzic A, Tuba M (2014) Improved bat algorithm applied to multilevel image thresholding. Sci World J. https://doi.org/10.1155/2014/176718
Article
Google Scholar
Ohkubo H, Nakagawa H, Niimi A (2018) Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: a mini review. Respir Investig 56(1):5–13. https://doi.org/10.1016/j.resinv.2017.10.003
Article
PubMed
Google Scholar
Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y et al (2020) CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol 30:4407–4416. https://doi.org/10.1007/s00330-020-06817-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanza E, Muglia R, Bolengo I, Santonocito OG, Lisi C, Angelotti G et al (2020) Quantitative chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. Eur Radiol 30:6770–6778
Article
CAS
PubMed
PubMed Central
Google Scholar
Bressem KK, Adams LC, Albrecht J, Petersen A, Thieß HM, Niehues A et al (2020) Is lung density associated with severity of COVID-19? Pol J Radiol 30(85):e600–e606. https://doi.org/10.5114/pjr.2020.100788
Article
Google Scholar
Salvatore C, Roberta F, Angela L, Cesare P, Alfredo C, Giuliano G et al (2021) Clinical and laboratory data, radiological structured report findings and quantitative evaluation of lung involvement on baseline chest CT in COVID-19 patients to predict prognosis. Radiol Med 126(1):29–39. https://doi.org/10.1007/s11547-020-01293-w
Article
PubMed
Google Scholar
Romanov AM, Yang S, Fabian C, Franzeck FC, Sommer G et al (2021) Automated CT lung density analysis of viral pneumonia and healthy lungs using Deep learning-based segmentation, histograms and HU thresholds. Diagnostics 11:738. https://doi.org/10.3390/diagnostics11050738
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, et al, (2020) The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society. Chest 158(1):106–116. https://doi.org/10.1016/j.chest.2020.04.003
Article
CAS
PubMed
Google Scholar
Bos LDJ, Paulus F, Vlaar APJ, Beenen LFM, Schultz MJ (2020) Subphenotyping acute respiratory distress syndrome in patients with COVID-19: consequences for ventilator management. Ann Am Thorac Soc 17(9):1161–1163. https://doi.org/10.1513/AnnalsATS.202004-376RL
Article
PubMed
PubMed Central
Google Scholar
Gibson PG, Qin L, Puah SH (2020) COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust. https://doi.org/10.5694/mja2.50674
Article
PubMed
PubMed Central
Google Scholar