Rager O, Lee-Felker SA, Tabouret-Viaud C, Felker ER, Poncet A, Amzalag G, Garibotto V, Zaidi H, Walter MA (2018) Accuracy of whole-body HDP SPECT/CT, FDG PET/CT, and their combination for detecting bone metastases in breast cancer: an intra-personal comparison. American journal of nuclear medicine and molecular imaging 8(3):159–168
CAS
PubMed
PubMed Central
Google Scholar
Chandra P et al (2020) Evaluation of diagnostic accuracy and impact of preoperative positron emission tomography/computed tomography in the management of early operable breast cancers. Indian Journal of Nuclear Medicine: IJNM: The Official Journal of the Society of Nuclear Medicine, India 35(1):40
Google Scholar
Elsayed AG et al (2018) PET avidity and tumor clinical and pathological features in breast cancer. Proc Am Soc Clin Oncol 36(15_suppl):e12623. https://doi.org/10.1200/JCO.2018.36.15_suppl.e12623
Article
Google Scholar
Dai X et al (2015) BCintrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5(10):2929
CAS
PubMed
PubMed Central
Google Scholar
Surov A, Meyer HJ, Wienke A (2019) Associations between PET parameters and expression of Ki-67 in breast cancer. Transl Oncol 12(2):375–380. https://doi.org/10.1016/j.tranon.2018.11.005
Article
PubMed
Google Scholar
Jafari SH et al (2018) BCdiagnosis: Imaging techniques and biochemical markers. J Cell Physiol 233(7):5200–5213
Article
CAS
Google Scholar
Segaert I, Mottaghy F, Ceyssens S, de Wever W, Stroobants S, van Ongeval C, van Limbergen E, Wildiers H, Paridaens R, Vergote I, Christiaens MR, Neven P (2010) Additional value of PET–CT in staging of clinical stage IIB and III breast cancer. Breast J 16(6):617–624. https://doi.org/10.1111/j.1524-4741.2010.00987.x
Article
PubMed
Google Scholar
Yamamoto S et al (2019) Maximum standardized uptake value of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography could replace pathological diagnosis in luminal breast cancer. Annals of Breast Surgery 3. https://doi.org/10.21037/abs.2019.02.01
Turkmen C (2019) Nuclear Medicine Imaging in Breast Cancer. In: Breast Cancer Springer, pp 223–237
Chapter
Google Scholar
Kitajima K, Miyoshi Y, Yamano T, Odawara S, Higuchi T, Yamakado K (2018) Prognostic value of FDG-PET and DWI in breast cancer. Ann Nucl Med 32(1):44–53. https://doi.org/10.1007/s12149-017-1217-9
Article
PubMed
Google Scholar
Satoh Y, Motosugi U, Omiya Y, Onishi H (2019) Unexpected Abnormal Uptake in the Breasts at Dedicated Breast PET: Incidentally Detected Small Cancers or Nonmalignant Features? Am J Roentgenol 212(2):443–449. https://doi.org/10.2214/AJR.18.20066
Article
Google Scholar
Vanderhoek M, Perlman SB, Jeraj R (2012) Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med 53(1):4–11. https://doi.org/10.2967/jnumed.111.093443
Article
CAS
Google Scholar
Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 45(9):1519–1527
PubMed
Google Scholar
Keramida G, Dizdarevic S, Bush J, Peters AM (2015) Quantification of tumour 18 F-FDG uptake: Normalise to blood glucose or scale to liver uptake? Eur Radiol 25(9):2701–2708. https://doi.org/10.1007/s00330-015-3659-6
Article
PubMed
Google Scholar
Wahl RL et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 50(Suppl 1):122S
Article
CAS
Google Scholar
Lee JW, Kim SK, Lee SM, Moon SH, Kim TS (2011) Detection of hepatic metastases using dual-time-point FDG PET/CT scans in patients with colorectal cancer. Mol Imaging Biol 13(3):565–572. https://doi.org/10.1007/s11307-010-0394-x
Article
PubMed
Google Scholar
Ali Gholamrezanezhad MD, Muzaffar FR, Osman MM (2012) Respiratory Muscle^ sup 18^ F-FDG Uptake/REPLY. Journal of Nuclear Medicine Technology 40(3):210
Article
Google Scholar
Önner H, Canaz F, Dinçer M, Işiksoy S, Sivrikoz İAK, Entok E, Erkasap S (2019) Which of the fluorine-18 fluorodeoxyglucose positron emission tomography/computerized tomography parameters are better associated with prognostic factors in breast cancer? Medicine. 98(22):e15925. https://doi.org/10.1097/MD.0000000000015925
Article
PubMed
PubMed Central
Google Scholar
IBM_SPSS. Statistical Package for Social Science. Ver.21. Standard version. Copyright © SPSS Inc., 2011-2012. NY, USA. 2012
Google Scholar
Groheux D et al (2013) Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266(2):388–405
Article
Google Scholar
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ, Panel members (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the 1ry Therapy of Early BC2011. Ann Oncol 22(8):1736–1747. https://doi.org/10.1093/annonc/mdr304
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin S, Pak K, Kim SJ (2016) Tumor heterogeneity assessed by 18F-FDG PET/CT is not significantly associated with nodal metastasis in BCpatients. Oncology research and treatment 39(1-2):61–66. https://doi.org/10.1159/000442760
Article
CAS
PubMed
Google Scholar
Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34(3):414–419
CAS
PubMed
Google Scholar
Lee SH, Kim SH, Park HS, Kim JH, Kim D, Cho H, Yun M (2019) The prognostic value of 18f-fdg uptake in the supraclavicular lymph node (n3c) on Pet/ct in patients with locally advanced BCwith clinical N3c. Clin Nucl Med 44(1):e6–e12. https://doi.org/10.1097/RLU.0000000000002365
Article
PubMed
Google Scholar
Ueda S, Tsuda H, Asakawa H, Shigekawa T, Fukatsu K, Kondo N, Yamamoto M, Hama Y, Tamura K, Ishida J, Abe Y, Mochizuki H (2008) Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in 1ry breast cancer. Jpn J Clin Oncol 38(4):250–258. https://doi.org/10.1093/jjco/hyn019
Article
PubMed
Google Scholar
Abubakar ZA, Akepati NKR, Bikkina P (2019) Correlation of maximum standardized uptake values in 18F-Fluorodeoxyglucose positron emission tomography-computed tomography scan with immunohistochemistry and other prognostic factors in breast cancer. Indian Journal of Nuclear Medicine: IJNM: The Official Journal of the Society of Nuclear Medicine, India 34(1):10
Google Scholar
Alavi J (2019) 18 Utility of F-FDG PET/CT in pre-surgical risk stratification of patients with breast cancer. Hellenic journal of nuclear medicine 22(3):165–171
PubMed
Google Scholar
Antunovic L, Gallivanone F, Sollini M, Sagona A, Invento A, Manfrinato G, Kirienko M, Tinterri C, Chiti A, Castiglioni I (2017) [18 F] FDG PET/CT features for the molecular characterization of 1ry breast tumors. Eur J Nucl Med Mol Imaging 44(12):1945–1954. https://doi.org/10.1007/s00259-017-3770-9
Article
CAS
PubMed
Google Scholar
Groheux D, Giacchetti S, Moretti JL, Porcher R, Espié M, Lehmann-Che J, de Roquancourt A, Hamy AS, Cuvier C, Vercellino L, Hindié E (2011) Correlation of high 18 F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38(3):426–435. https://doi.org/10.1007/s00259-010-1640-9
Article
PubMed
Google Scholar
Higuchi T, Nishimukai A, Ozawa H, Fujimoto Y, Yanai A, Miyagawa Y, Murase K, Imamura M, Takatsuka Y, Kitajima K, Fukushima K, Miyoshi Y (2016) Prognostic significance of preoperative 18F-FDG PET/CT for BCsubtypes. Breast 30:5–12. https://doi.org/10.1016/j.breast.2016.08.003
Article
PubMed
Google Scholar
Ishiba T, Nakagawa T, Sato T, Nagahara M, Oda G, Sugimoto H, Kasahara M, Hosoya T, Kubota K, Fujioka T, Danenberg P, Danenberg K, Uetake H (2015) Efficiency of fluorodeoxyglucose positron emission tomography/computed tomography to predict prognosis in BCpatients received neoadjuvant chemotherapy. SpringerPlus 4(1):817. https://doi.org/10.1186/s40064-015-1634-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaida H, Toh U, Hayakawa M, Hattori S, Fujii T, Kurata S, Kawahara A, Hirose Y, Kage M, Ishibashi M (2013) The relationship between 18F-FDG metabolic volumetric parameters and clinicopathological factors of breast cancer. Nucl Med Commun 34(6):562–570. https://doi.org/10.1097/MNM.0b013e328360d945
Article
PubMed
Google Scholar
Kajáry K, Tőkés T, Dank M, Kulka J, Szakáll S, Lengyel Z (2015) Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer. Nucl Med Commun 36(1):28–37. https://doi.org/10.1097/MNM.0000000000000217
Article
CAS
PubMed
Google Scholar
Koo HR, Park JS, Kang KW, Han W, Park IA, Moon WK (2015) Correlation between 18 F-FDG uptake on PET/CT and prognostic factors in triple-negative breast cancer. Eur Radiol 25(11):3314–3321. https://doi.org/10.1007/s00330-015-3734-z
Article
PubMed
Google Scholar
Tuzcu SA et al (2020) The association of axillary lymph node-positive BC with metabolic parameters of 18F-fluorodeoxyglucose PET/CT. Medical Science and Discovery 7(3):445–449. https://doi.org/10.36472/msd.v7i3.363
Article
CAS
Google Scholar
Yildirim N, Simsek M, Aldemir MN, Bilici M, Tekin SB (2019) Relationship between 18-FDG-PET/CT and Clinicopathological Features and Pathological Responses in Patients with Locally Advanced Breast Cancers. The Eurasian journal of medicine 51(2):154–159. https://doi.org/10.5152/eurasianjmed.2018.18036
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanli Y, Kuyumcu S, Ozkan ZG, Işık G, Karanlik H, Guzelbey B, Turkmen C, Ozel S, Yavuz E, Mudun A (2012) Increased FDG uptake in BC is associated with prognostic factors. Ann Nucl Med 26(4):345–350. https://doi.org/10.1007/s12149-012-0579-2
Article
CAS
PubMed
Google Scholar
Buck A, Schirrmeister H, Kühn T, Shen C, Kalker T, Kotzerke J, Dankerl A, Glatting G, Reske S, Mattfeldt T (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29(10):1317–1323. https://doi.org/10.1007/s00259-002-0880-8
Article
CAS
PubMed
Google Scholar
Caudle AS et al (2012) Local-regional control according to surrogate markers of BCsubtypes and response to neoadjuvant chemotherapy in BCpatients undergoing breast conserving therapy. BCResearch 14(3):R83
Google Scholar
Arslan E, Çermik TF, Trabulus FDC, Talu ECK, Başaran Ş (2018) Role of 18F-FDG PET/CT in evaluating molecular subtypes and clinicopathological features of 1ry breast cancer. Nucl Med Commun 39(7):680–690. https://doi.org/10.1097/MNM.0000000000000856
Article
PubMed
Google Scholar
An Y-S, Kang DK, Jung Y, Kim TH (2017) Volume-based metabolic parameter of BCon preoperative 18F-FDG PET/CT could predict axillary lymph node metastasis. Medicine 96(45):e8557. https://doi.org/10.1097/MD.0000000000008557
Article
PubMed
PubMed Central
Google Scholar
Huang J, Huang L, Zhou J, Duan Y, Zhang Z, Wang X, Huang P, Tan S, Hu P, Wang J, Huang M (2017) Elevated tumor-to-liver uptake ratio (TLR) from 18 F–FDG-PET/CT predicts poor prognosis in stage IIA colorectal cancer following curative resection. Eur J Nucl Med Mol Imaging 44(12):1958–1968. https://doi.org/10.1007/s00259-017-3779-0
Article
PubMed
PubMed Central
Google Scholar
Gu J, Yamamoto H, Fukunaga H, Danno K, Takemasa I, Ikeda M, Tatsumi M, Sekimoto M, Hatazawa J, Nishimura T, Monden M (2006) Correlation of GLUT-1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-D-glucose uptake by positron emission tomography in colorectal cancer. Dig Dis Sci 51(12):2198–2205. https://doi.org/10.1007/s10620-006-9428-2
Article
CAS
PubMed
Google Scholar
Kim J et al (2020) Factors affecting the negative predictive value of positron emission tomography/computed tomography for axillary lymph node staging in BCpatients. Asian Journal of Surgery 43(1):193–200
Article
Google Scholar
Sarikaya I, Sarikaya A (2019) Assessing PET parameters in oncologic 18F-FDG studies. Journal of Nuclear Medicine Technology 119:236109
Google Scholar
Shi Y-M, Niu R, Shao XL, Zhang FF, Shao XN, Wang JF, Wang XS, Liu B, Yu WJ, Wang YT (2020) Tumor-to-liver standard uptake ratio using fluorine-18 fluorodeoxyglucose positron emission tomography computed tomography effectively predict occult lymph node metastasis of non–small cell lung cancer patients. Nucl Med Commun 41(5):459–468. https://doi.org/10.1097/MNM.0000000000001173
Article
CAS
PubMed
Google Scholar