Luo X, Wu ACYZYJBZJ (2019) Analysis of risk factors for postoperative recurrence of thyroid cancer. JBUON 24(2):813–818
PubMed
Google Scholar
Naoum GE, Morkos M, Kim B, Arafat W (2018) Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer 17(1):51. https://doi.org/10.1186/s12943-018-0786-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Gosnell JE, Roman SA (2020) Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol 16(1):17–29. https://doi.org/10.1038/s41574-019-0263-x3
Article
PubMed
Google Scholar
Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L (2016) Worldwide thyroid-cancer epidemic? The increasing impact of over diagnosis. N Engl J Med 375(7):614–617. https://doi.org/10.1056/NEJMp1604412
Article
PubMed
Google Scholar
Davies L, Welch HG (2014) Current thyroid trends in the United States. JAMA Otolaryngol Head Neck Surg 140(4):317–322. https://doi.org/10.1001/jamaoto.2014.1
Article
PubMed
Google Scholar
Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295(18):2164–2167. https://doi.org/10.1001/jama.295.18.2164
Article
CAS
PubMed
Google Scholar
Davies L, Ouellette M, Hunter M, Welch HG (2010) The increasing incidence of small thyroid cancers: where are the cases coming from? Laryngoscope 120(12):2446–2451. https://doi.org/10.1002/lary.21076
Article
PubMed
Google Scholar
Morris LG, Myssiorek D (2010) Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: a population-based analysis. Am J Surg 200(4):454–461. https://doi.org/10.1016/j.amjsurg.2009.11.008
Article
PubMed
PubMed Central
Google Scholar
Chen L, Luo Q, Shen Y, Yu Y, Yuan Z, Lu H et al (2008) Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. JNM 49(12):1952–1957. https://doi.org/10.2967/jnumed.108.052399
Article
PubMed
Google Scholar
Moustafa H, Taalab K (2012) Role of 18F-FDG-PET/CT in patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I whole body scan. EJNM 5(5):39–46. https://doi.org/10.21608/EGYJNM.2012.5481
Article
Google Scholar
Yang x, Liang j, Li TJ, Yang K, Liang D, Yu Z, et al (2015) Postoperative stimulated thyroglobulin level and recurrence risk stratification in differentiated thyroid cancer. Chin Med J (Engl) 128(8):1058–1064. https://doi.org/10.4103/0366-6999.155086
Article
CAS
Google Scholar
Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338(5):297–306. https://doi.org/10.1056/NEJM199801293380506
Article
CAS
PubMed
Google Scholar
Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS (1993) Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 114(6):1050–1057 (discussion 1057-8)
CAS
PubMed
Google Scholar
Lin JD, Huang MJ, Juang JH, Chao TC, Huang BY, Chen KW et al (1999) Factors related to the survival of papillary and follicular thyroid carcinoma patients with distant metastases. Thyroid 9(12):1227–1235. https://doi.org/10.1089/thy.1999.9.1227
Article
CAS
PubMed
Google Scholar
Wartofsky L, Sherman SI, Gopal J, Schlumberger M, Hay ID (1998) The use of radioactive iodine in patients with papillary and follicular thyroid cancer. J Clin Endocrinol Metab 83(12):4195–4203. https://doi.org/10.1210/jcem.83.12.5293-1
Article
CAS
PubMed
Google Scholar
Schlumberger MJ (1999) Diagnostic follow-up of well-differentiated thyroid carcinoma: historical perspective and current status. J Endocrinol Invest 22(11):3–7
CAS
PubMed
Google Scholar
Giannoula E, Iakovou I, Verburg FA (2018) Long term quality of life in differentiated thyroid cancer patients after thyroidectomy and high doses of 131I with or without suppressive treatment. Hell J Nucl Med 21(1):69–73. https://doi.org/10.1967/s002449910708
Article
PubMed
Google Scholar
Ronga G, Toteda M, D’Apollo R, De Cristofaro F, Filesi M, Acqualagna G et al (2012) Lymph node metastases from differentiated thyroid carcinoma: does radioiodine still play a role? Clin Ter 163:377–381
CAS
PubMed
Google Scholar
Choudhury PS, Gupta M (2018) Differentiated thyroid cancer theranostics: radioiodine and beyond. Br J Radiol 91(1091):20180136. https://doi.org/10.1259/bjr.20180136
Article
PubMed
PubMed Central
Google Scholar
Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) 2015 American Thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133. https://doi.org/10.1089/thy.2015.0020
Article
PubMed
PubMed Central
Google Scholar
Miller ME, Chen Q, Elashoff D, Abemayor E, St John M (2011) Positron emission tomography and positron emission tomography-CT evaluation for recurrent papillary thyroid carcinoma: meta-analysis and literature review. Head Neck 33(4):562–565. https://doi.org/10.1002/hed.21492
Article
PubMed
Google Scholar
Makeieff M, Burcia V, Raingeard I, Eberlé MC, Cartier C, Garrel R et al (2012) Positron emission tomography-computed tomography evaluation for recurrent differentiated thyroid carcinoma. Eur Ann Otorhinolaryngol Head Neck Dis 129(5):251–256. https://doi.org/10.1016/j.anorl.2012.01.003
Article
CAS
PubMed
Google Scholar
Feine U, Lietzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W (1996) Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. JNM 37(9):1468–1472
CAS
PubMed
Google Scholar
Leboulleux S, El Bez I, Borget I, Elleuch M, Déandreis D, Al Ghuzlan A et al (2012) Postradioiodine treatment whole-body scan in the era of 18-fluorodeoxyglucose positron mission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid 22(8):832–838. https://doi.org/10.1089/thy.2012.0081
Article
CAS
PubMed
Google Scholar
Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H (1997) Fluorine-18 fluoro-deoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 24(11):1342–1348. https://doi.org/10.1007/s002590050158
Article
CAS
PubMed
Google Scholar
Dionigi G, Fama’ F, Pignata SA, Pino A, Pontin A, Caruso E et al (2020) Usefulness of PET-CT scan in recurrent thyroid cancer. World J Otorhinolaryngol Head Neck Surg 6(3):182–187. https://doi.org/10.1016/j.wjorl.2020.02.008
Article
PubMed
PubMed Central
Google Scholar
Kolodziej M, Saracyn M, Lubas A, Brodowska-Kania D, Mazurek A, Dziuk M et al (2021) Evaluation of the usefulness of positron emission tomography with [18F]fluorodeoxylglucose performed to detect non-radioiodine avid recurrence and/or metastasis of differentiated thyroid cancer: a preliminary study. Nucl Med Rev 24(2):63–69. https://doi.org/10.5603/NMR.2021.0017
Article
Google Scholar
Almeida LS, Araújo ML, Santos AO, Montali da Assumpção LV, Lima ML, Ramos CD et al (2020) Head-to-head comparison of F-18 FDG PET/CT in radioidine refractory thyroid cancer patients with elevated versus suppressed TSH levels a pilot study. Heliyon 6(3):e03450. https://doi.org/10.1016/j.heliyon.2020.e03450
Article
PubMed
PubMed Central
Google Scholar
Klain M, Nappi C, Nicolai E, Romeo V, Piscopo L, Giordano A et al (2000) Comparison of simultaneous (18) F-2-[18F] FDG PET/MR and PET/CT in the follow-up of patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 47(13):3066–3073. https://doi.org/10.1007/s00259-020-04938-0
Article
CAS
Google Scholar
Li H, Chen X, Zhang Y, Wang K, Gao Z (2021) Value of 18F-FDG hybrid PET/MR in differentiated thyroid cancer patients with negative 131I whole-body scan and elevated thyroglobulin levels. Cancer Manag Res 13:2869–2876. https://doi.org/10.2147/CMAR.S293005
Article
PubMed
PubMed Central
Google Scholar
Piccardo A, Foppiani L, Morbelli S, Bianchi P, Barbera F, Biscaldi E et al (2011) Could 18FDG-PET/CT change the therapeutic management of stage IV thyroid cancer with positive 131I whole body scan? Q J Nucl Med Mol Imaging 55(1):57–65
CAS
PubMed
Google Scholar
Abraham T, Schöder H (2011) Thyroid cancer–indications and opportunities for positron emission tomography/computed tomography imaging. Semin Nucl Med 41(2):121–138. https://doi.org/10.1053/j.semnuclmed.2010.10.006
Article
PubMed
Google Scholar
Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214. https://doi.org/10.1089/thy.2009.0110
Article
PubMed
Google Scholar
Grabellus F, Nagarajah J, Bockisch A, Schmid KW, Sheu SY (2012) Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med 37(2):121–127. https://doi.org/10.1097/RLU.0b013e3182393599
Article
PubMed
Google Scholar
Treglia G, Annunziata S, Muoio B, Salvatori M, Ceriani L, Giovanella L (2013) The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview. Int J Endocrinol 2013:856189. https://doi.org/10.1155/2013/856189
Article
CAS
PubMed
PubMed Central
Google Scholar
Poisson T, Deandreis D, Leboulleux S, Bidault F, Bonniaud G, Baillot S et al (2010) 18F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging 37(12):2277–2285. https://doi.org/10.1007/s00259-010-1570-6
Article
PubMed
Google Scholar
Schönberger J, Rüschoff J, Grimm D, Marienhagen J, Rümmele P, Meyringer R et al (2002) Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 12(9):747–754. https://doi.org/10.1089/105072502760339307
Article
PubMed
Google Scholar
Treglia G, Bertagna F, Piccardo A, Giovanella L (2013) 131I whole-body scan or 18FDG PET/CT for patients with elevated thyroglobulin and negative ultrasound? Clin Transl Imaging 1(3):175–183. https://doi.org/10.1007/s40336-013-0024-0
Article
Google Scholar
Liu M, Cheng L, Jin Y, Ruan M, Sheng S, Chen L (2018) Predicting 131 I-avidity of metastases from differentiated thyroid cancer using 18FDG-PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 8(1):4352. https://doi.org/10.1038/s41598-018-22656-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenbaum-Krumme SJ, Görges R, Bockisch A, Binse I (2012) 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging 39:1373–1380. https://doi.org/10.1007/s00259-012-2065-4
Article
PubMed
Google Scholar
Oh JR, Byun BH, Hong SP, Chong A, Kim J, Yoo SW et al (2011) Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18FDG-PET/CT in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging 38(8):1459–1468. https://doi.org/10.1007/s00259-011-1809-x
Article
PubMed
Google Scholar
Riemann B, Uhrhan K, Dietlein M, Schmidt D, Kuwert T, Dorn R et al (2013) Diagnostic value and therapeutic impact of 18FDG-PET/CT in differentiated thyroid cancer. Nuklearmedizin 52(1):1–6. https://doi.org/10.3413/nukmed-0489-12-03
Article
CAS
PubMed
Google Scholar
Maamoun N, Moustafa H, Zaher A, Fathy H (2020) Value of initial 18FDG-PET/CT in change of management of patients with differentiated thyroid cancer as compared to post ablative whole body iodine scan. Egypt J Nucl Med 21(2):34–49. https://doi.org/10.21608/EGYJNM.2020.140414
Article
Google Scholar