Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691
Article
PubMed
Google Scholar
Ades F, Zardavas D, Bozovic-Spasojevic I, Pugliano L, Fumagalli D, de Azambuja E, Viale G, Sotiriou C, Piccart M (2014) Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol 32:2794–2803
Article
PubMed
Google Scholar
Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B (2011) Senn HJ and Panel members: Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22:1736–1747
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B (2013) Senn HJ and Panel members: Personalizing the treatment of women with early breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol 24:2206–2223
Article
CAS
PubMed
PubMed Central
Google Scholar
Boisserie-Lacroix M, Hurtevent-Labrot G, Ferron S, Lippa N, Bonnefoi H, Mac Grogan G (2013) Correlation between imaging and molecular classification of breast cancers. Diagn Interv Imaging 94:1069–1080
Article
CAS
PubMed
Google Scholar
Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI (2014) Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273:365–372
Article
PubMed
Google Scholar
Aberle DR, Chiles C, Gatsonis C, Hillman BJ, Johnson CD, McClennan BL, Mitchell DG, Pisano ED, Schnall MD, Sorensen AG (2005) American College of Radiology Imaging Network: imaging and cancer: research strategy of the American college of radiology imaging network. Radiology 235:741–751
Article
PubMed
Google Scholar
Zhang L, Li J, Xiao Y, Cui H, Du G, Wang Y, Li Z, Wu T, Li X, Tian J (2015) Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision. Sci Rep 5:11085
Article
CAS
PubMed
PubMed Central
Google Scholar
Brandao AC, Lehman CD, Partridge SC (2013) Breast magnetic resonance imaging: diffusion-weighted imaging. Magn Reson Imaging Clin N Am 21:321–336
Article
PubMed
Google Scholar
Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125
Article
CAS
PubMed
PubMed Central
Google Scholar
Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344
Article
CAS
PubMed
Google Scholar
Woodhams R, Ramadan S, Stanwell P, Sakamoto S, Hata H, Ozaki M, Kan S, Inoue Y (2011) Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics 31:1059–1084
Article
PubMed
Google Scholar
Atuegwu NC, Arlinghaus LR, Li X, Welch EB, Chakravarthy BA, Gore JC, Yankeelov TE (2011) Integration of diffusion-weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy. Magn Reson Med 66:1689–1696
Article
PubMed
PubMed Central
Google Scholar
Yoshikawa MI, Ohsumi S, Sugata S, Kataoka M, Takashima S, Mochizuki T, Ikura H, Imai Y (2008) Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med 26:222–226
Article
PubMed
Google Scholar
Squillaci E, Manenti G, Di Roma M, Miano R, Palmieri G, Simonetti G (2004) Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 24:4175–4179
PubMed
Google Scholar
Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2009) Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol 193:1716–1722
Article
PubMed
Google Scholar
Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW (2002) In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 15:693–704
Article
PubMed
Google Scholar
Fornasa F, Pinali L, Gasparini A, Toniolli E, Montemezzi S (2011) Diffusion-weighted magnetic resonance imaging in focal breast lesions: analysis of 78 cases with pathological correlation. Radiol Med 116:264–275
Article
CAS
PubMed
Google Scholar
Malayeri AA, El Khouli RH, Zaheer A, Jacobs MA, Corona-Villalobos CP, Kamel IR, Macura KJ (2011) Principles and applications of diffusion weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31:1773–1791
Article
PubMed
Google Scholar
Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407
Article
PubMed
Google Scholar
Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361
Article
PubMed
Google Scholar
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505
Article
PubMed
Google Scholar
Suo S, Lin N, Wang H, Zhang L, Wang R, Zhang S, Hua J, Xu J (2015) Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer at 3.0 tesla: comparison of different curve-fitting methods. J Magn Reson Imaging 42:362–370
Article
PubMed
Google Scholar
Kim Y, Ko K, Kim D, Min C, Kim SG, Joo J, Park B (2016) Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes. Br J Radiol 89:20160140
Article
PubMed
PubMed Central
Google Scholar
Sigmund EE, Cho GY, Kim S, Finn M, Moccaldi M, Jensen JH, Sodickson DK, Goldberg JD, Formenti S, Moy L (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447
Article
CAS
PubMed
PubMed Central
Google Scholar
Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancercell plasticity. Nature 501:328–337
Article
CAS
PubMed
PubMed Central
Google Scholar
Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108:479–485
Article
CAS
PubMed
PubMed Central
Google Scholar
Polyak K (2011) Heterogeneity in breast cancer. J Clin Invest 121:3786–3788
Article
CAS
PubMed
PubMed Central
Google Scholar
Iima M, Yano K, Kataoka M, Umehana M, Murata K, Kanao S, Togashi K, Le Bihan D (2015) Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Invest Radiol 50:205–211
Article
PubMed
Google Scholar
Liu C, Liang C, Liu Z, Zhang S, Huang B (2013) Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 82:e782–e789
Article
PubMed
Google Scholar
Cho GY, Moy L, Kim SG, Baete SH, Moccaldi M, Babb JS, Sodickson DK, Sigmund EE (2016) Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur Radiol 26:2547–2558
Article
PubMed
Google Scholar
Alili C, Pages E, Curros Doyon F, Perrochia H, Millet I, Taourel P (2014) Correlation between MR imaging-prognosis factors and molecular classification of breast cancers. Diagn Interv Imag 95:235–242
Article
CAS
Google Scholar
Uematsu T, Kasami M, Yuen S (2009) Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology 250:638–647
Article
PubMed
Google Scholar
Suo S, Yin Y, Geng X, Zhang D, Hua J, et al. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, bi-, and stretched-exponential models. 2021; 19:236.
Kim Y, Kim SH, Lee HW, Song BJ, Kang BJ, Lee A et al (2018) Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer. Magn Reson Imaging 48:27–33
Article
CAS
PubMed
Google Scholar
Cho GY, Gennaro L, Sutton EJ, Zabor EC, Zhang Z, Giri D et al (2017) Intravoxel incoherent motion (IVIM) histogram biomarkers for prediction of neoadjuvant treatment response in breast cancer patients. Eur J Radiol Open 4:101–107
Article
PubMed
PubMed Central
Google Scholar
Che S, Zhao X, Yanghan O, Li J, Wang M, Wu B et al (2016) Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer. Medicine 95(4):66
Article
CAS
Google Scholar
Bedair R, Priest AN, Patterson AJ, McLean MA, Graves MJ, Manavaki R et al (2017) Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations. Eur Radiol 27(7):2726–2736
Article
PubMed
Google Scholar
He M et al (2021) Application of diffusion weighted imaging techniques for differentiating benign and malignant breast lesions. Front Oncol 11:2422
Google Scholar
Meng N, Wang XJ, Sun J, Huang L, Wang Z, Wang KY et al (2020) Comparative study of amide proton transfer-weighted imaging and intravoxel incoherent motion imaging in breast cancer diagnosis and evaluation. J Magn ResonImaging 52:1175–1186
Google Scholar
Song SE, Cho KR, Seo BK, Woo OH, Park KH, Son YH et al (2019) Intravoxel incoherent motion diffusion-weighted MRI of invasive breast cancer: correlation with prognostic factors and kinetic features acquired with computer-aided diagnosis. J Magn Reson Imaging 49:118–130
Article
PubMed
Google Scholar
Zhao M, Fu K, Zhang L, Guo W, Wu Q, Bai X et al (2018) Intravoxel incoherent motion magnetic resonance imaging for breast cancer: a comparison with benign lesions and evaluation of heterogeneity in different tumor regions with prognostic factors and molecular classification. Oncol Lett 16:5100–5112
PubMed
PubMed Central
Google Scholar
Mao X et al (2018) Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging (IVIM) for differential diagnosis and grading prediction of benign and malignant breast lesions. Medicine 97:26
Google Scholar
Lin N, Chen J, Hua J, Zhao J, Zhao J, Lu J (2017) Intravoxel incoherent motion MR imaging in breast cancer: quantitative analysis for characterizing lesions. Int J Clin Exp Med 10:1705–1714
Google Scholar
Iima M, Kataoka M, Kanao S, Onishi N, Kawai M, Ohashi A et al (2018) Intravoxel incoherent motion and quantitative non-gaussian diffusion MR Imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology 287:432–441
Article
PubMed
Google Scholar
Cho GY, Moy L, Kim SG, Baete SH, Moccaldi M, Babb JS et al (2016) Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur Radiol 26:2547–2558
Article
PubMed
Google Scholar
Wang Q, Guo Y, Zhang J, Wang Z, Huang M, Zhang Y (2016) Contribution of IVIM to conventional dynamic contrast-enhanced and diffusion-weighted MRI in differentiating benign from malignant breast masses. Breast Care 11:254–258
Article
PubMed
PubMed Central
Google Scholar
Liu C, Wang K, Chan Q, Liu Z, Zhang J, He H et al (2016) Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Eur Radiol 26:3888–3898
Article
PubMed
Google Scholar
Bokacheva L, Kaplan JB, Giri DD, Patil S, Gnanasigamani M, Nyman CG et al (2014) Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 40:813–23
Article
PubMed
Google Scholar
Fangberget A, Nilsen L, Hole KH, Holmen M, Engebraaten O, Naume B et al (2011) Neoadjuvant chemotherapy in breast cancer-response evaluation and prediction of response to treatment using dynamic contrast-enhanced and diffusion-weighted MR imaging. Eur Radiol 21(6):1188–1199
Article
CAS
PubMed
Google Scholar
Andreou A, Koh D, Collins D, Blackledge M, Wallace T, Leach M et al (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23(2):428–434
Article
CAS
PubMed
Google Scholar
Kakite S, Dyvorne H, Besa C, Cooper N, Facciuto M, Donnerhack C et al (2015) Hepatocellular carcinoma: Short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 30 T. J Magn Resonan Imaging 41(1):149–56
Article
Google Scholar
Nougaret S, Vargas HA, Lakhman Y, Sudre R, Do RK, Bibeau F et al (2016) Intravoxel incoherent motion–derived histogram metrics for assessment of response after combined chemotherapy and radiation therapy in rectal cancer: initial experience and comparison between single-section and volumetric analyses. Radiology 280(2):446–454
Article
PubMed
Google Scholar
Park SH, Moon WK, Cho N, Song IC, Chang JM, Park I-A et al (2010) Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology 257(1):56–63
Article
PubMed
Google Scholar
Partridge SC, Nissan N, Rahbar H, Kitsch AE, Sigmund EE (2017) Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging 45(2):337–355
Article
PubMed
Google Scholar
Fujimoto H, Kazama T, Nagashima T, Sakakibara M, Suzuki TH, Okubo Y et al (2014) Diffusion-weighted imaging reflects pathological therapeutic response and relapse in breast cancer. Breast Cancer 21(6):724–731
Article
PubMed
Google Scholar
Ah-See M-LW, Makris A, Taylor NJ, Harrison M, Richman PI, Burcombe RJ et al (2008) Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 14(20):6580–9
Article
CAS
PubMed
Google Scholar
Xiao Y, Pan J, Chen Y, Chen Y, He Z, Zheng X (2015) Intravoxel incoherent motion-magnetic resonance imaging as an early predictor of treatment response to neoadjuvant chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Medicine 94(24):66
Article
CAS
Google Scholar
Li XR, Cheng LQ, Liu M, Zhang YJ, Wang JD, Zhang AL, Song X, Li J, Zheng YQ, Liu L (2012) DW-MRI ADC values can predict treatment response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Med Oncol 29(2):425–431
Article
CAS
PubMed
Google Scholar
Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A et al (2008) Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol 26(5):778–785
Article
PubMed
Google Scholar
Darland DC, D’Amore PA (1999) Blood vessel maturation: vascular development comes of age. J Clin Investig 103(2):157–158
Article
CAS
PubMed
PubMed Central
Google Scholar
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536
Article
PubMed
Google Scholar